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Abstract

The success of overparameterization in modern machine learning has caused a paradigm

shift in statistics. In particular, the phenomenon of double descent, wherein model

performance improves with model size far past the interpolation threshold, has upended

the classical understanding of the bias-variance tradeoff. Seeking tractable models in which

to study this, statisticians have returned to the canonical problem of linear regression,

though now under a high dimensional lens. There, examining the effects of

overparameterization in these simple models, they recover some hallmarks of double

descent. Throughout this literature, the assumption that the rows of the design are

independent and identically distributed is ubiquitous – little is known about what may

occur in settings of heavy dependence, which arise in, for example, neuroscience and

finance. Here, we instead model the design as right-rotationally invariant, a distribution

permitting significant row dependence that has received recent attention. Under this

model, we derive the out-of-sample risks for minimum norm linear interpolation and ridge

regression; furthermore, we prove that Generalized Cross Validation is no longer consistent,

and offer a consistent alternative. Lastly, we present partial findings on the random

features model with Gaussian inputs and right-rotationally invariant weights,

demonstrating numerical support for conjectures underlying our results.
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0
Introduction

The most well studied statistical problem is that of regression – given a training dataset
{(xi, yi)}ni=1 consisting of covariates xi together with their labels yi, how can one best
predict the label of a new datapoint xnew? The standard approach to this problem is that
of learning a model. A practitioner first proposes a model class, a set of functions F which
serve as candidates for modeling the true labelling process. They then choose a function
f̂ ∈ F from this model class using some prescribed method, often by taking the model
minimizing a given error metric on training set (called empirical risk minimization), with
the hope that this model will then accurately predict ynew, the label of xnew.

One of the core tenets of classical statistics which governs this procedure is that of the
bias-variance tradeoff. The excess generalization error of the learned model, that is, it’s
accuracy in predicting ynew, is composed of two pieces: its bias, or its inability to reach the
ground truth labelling process, and its variance, or how sensitive it is to the noise in the
training data. The canonical example of this is the following decomposition of the
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Figure 1: The bias-variance tradeoff in the classical regime. [Bel+19, Figure 1(a)]

conditional squared error:

E[(ynew − f̂(xnew))
2 | xnew] = (E[ynew − f̂(xnew) | xnew]︸ ︷︷ ︸

bias

)2 + Var(f̂new(xnew) | xnew)︸ ︷︷ ︸
variance

+ Var(ynew | xnew)︸ ︷︷ ︸
irreducible noise

. (1)

Classical intuition states that as the numbers of parameters of the model class increases,
the flexibility of the learned model, and thus its ability to fit the ground truth, increases,
and hence the model’s bias decreases. However, at the same time, these increased degrees
of freedom in turn increase the model’s sensitivity to the training data, thereby causing its
variance to grow. The result is a delicate balance, where a practitioner choosing a model
class must balance these two competing quantities – choosing too few parameters risks
failing to capture the ground signal, called underfitting; choosing too many parameters
may potentially cause the model to fit to spurious signals in the training data, called
overfitting. This is summarized abstractly in Figure 1, and replicated in an experimental
setting in Figure 2(a); both plots show test loss first decreasing due to decreasing bias,
before increasing due to variance exploding. Three particular examples are shown in figures
2(b, c, d), depicting the range of fitted lines that are produced when 3, 7, and 10 features
are used, respectively. The dashed black line shows the ground truth process; the light blue
lines are one of 200 fits where the noise is resampled; the purple line shows the mean of
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Figure 2: Experimental example of bias-variance tradeoff in the classical regime. (a): test and train
loss. (b-d): Light blue lines are one of 200 fits, where the noise is resampled. Purple line shows the
mean of the 200 fits. Black dashed line shows the true process. Solid blue line shows the fit for the
displayed dataset (the white datapoints). Setup: Random Features regression, with features of the
form sigmoid(g1x+ g2), where g1, g2 ∼ N(0, 1). See Appendix A.5.1 for full experimental details.

these 200 fits, and the solid blue line shows the fit for the displayed dataset consisting of
the white points. In 2(b), with only 3 features, it is clear that the model class does not
have enough flexiblity to fit the underlying ground truth – none of the fits are able to
capture the trend, much less their average. At the same time, their tight clustering reveals
that this model class has low variance. Figure (c) shows the range of fits when 7 features
are used – this minimizes the test loss curve. We see that all of the 200 fits capture the
signal well, and indeed their mean almost perfectly matches the true signal. Lastly, (d)
illustrates the behavior when 10 features are used. While the mean captures the signal
almost perfectly, illustrating that this model class has close to no bias, the variance in the
200 fits is extremely large – the model is forced to pass through every point in the training
set, making it too sensitive to the noise within the dataset, which leads to the worst
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Figure 3: Double descent curve, [Bel+19, Figure 1(b)]

performance of any number of features, as seen in (a).
This problem has been extensively studied [HTF01], with techniques such as

regularization developed to placate the effects of overfitting by reducing the variance of the
fitted model.

Modern machine learning has illustrated the inadequacy of this picture. With the
notable caveat of large language models, which are still underparameterized, state of the
art performance in machine learning regression tasks is achieved by overparameterized
models (those with more parameters than datapoints) that are trained to nearly zero
training loss1, with performance continuing to improve as models grow in scale (parameter
count), in spite of classical wisdom suggesting that having zero training error should be
indicative of overfitting. This has contributed to a modern dogma of “scale is all you
need,” calling into question the usefulness of the classical statistical paradigm. In fact,
neural network architectures, at the same sizes at which they generalize well, are expressive
enough to memorize entirely random labels, even with regularization [Zha+17]. This
illustrates that the model class has the capacity to exhibit very high variance, and yet the
models learned in practice do not – indeed, fitting these models to zero error on data with
a significant level of noise still proves to yield strong predictive performance.

The behavior emerging as models are progressively overparameterized has been studied
1see e.g. [For+21], state of the art performance on CIFAR-100
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Figure 4: Same setting as in Figure 2. Despite having more parameters, the variance of increasingly
large models falls.

extensively; while this began as early as the late 1980s [Loo+20], it’s recognition as a
general empirical phenomenon in the machine learning literature began with [Bel+19].
Here, the authors describe how as the number of parameters increases while the training
dataset size is fixed, the generalization error does indeed first increase as the classical
theory suggests. However, as shown in Figure 3, this increase abruptly stops when the
training loss reaches zero. This point, called the interpolation threshold, usually occurs
when the number of parameters equals the number of datapoints, since in general it only
takes n parameters to fit n datapoints [YSJ19]. Models of this size or larger now all exhibit
zero training loss (and are hence referred to as interpolators), marking a phase transition in
model behavior. Beyond the interpolation threshold, generalization error now decreases,
despite the training loss remaining zero, signifying that the models remain overfit; this is in
stark contrast to the classical theory, which suggests that the variance of such models
should continue to grow, meaning the error should continue to climb. This non-monotone
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Figure 5: Regressor norm, in the same setting as Figure 2.

behavior of generalization error was dubbed double descent, and the fact that these overfit
models have good performance was called benign overfitting. Figures 4(a-d) illustrate this
trend in an experimental setting, as when the feature count continues to grow, the models
are now all unbiased, as shown by the mean fits perfectly following the trend of the data.
However, the variance of these models with larger feature counts in fact appears to be
smaller, especially at the edges of the domain (compare the light blue lines in (d) with (b,
c)).

In [Bel+19], the authors empirically reproduce double descent in Random Fourier
Features regression, neural networks, and decision trees. They remark that past the
interpolation threshold, there exist multiple solutions that perfectly fit the data. The
possible key mechanism behind double descent is then that the solution chosen by
stochastic gradient descent, the concept behind most empirical risk minimization for neural
networks, naturally converges to “simple” solutions, in the sense of having a small ℓ2 norm.
As a result, as the flexibility of the model class increases, its ability to fit the smoothest
possible interpolator increases, leading to decreasing risk in the overparameterized regime.
See Figure 5 for an illustration of this trend. This implicit preference for simpler solutions,
denoted an inductive bias, has motivated the study of the generalization errors of minimum
norm interpolators of various kinds [BRT19].
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In the time since, double descent has been analyzed in a variety of empirical and
theoretical settings. For example, [Nak+21] investigates the phenomenon over a variety of
optimization algorithms and network architectures on MNIST and CIFAR-10, concluding
that the phenomenon is quite robust to the noise level, network structure, and training
specifications. Likewise, [Nea+19] examines neural networks on a variety of datasets and
empirically estimates model bias and variance, finding that, contrary to the classical
understanding, variance of the fitted model past the interpolation threshold falls with
model size; this is shown, for example, in Figure 4(a). As for theoretical results, while it
has been hard to make progress in proving double descent in true deep neural networks,
extensive analysis of overparameterization has been conducted in the well-worn statistical
test bed of linear regression [Bar+20; CM22; HTF01], classification [Mon+23], as well as,
more recently, in random features models [AP20b; DL20; MM19]. As our work builds on
these results, we discuss them in detail in Chapter 1.

Despite the rich variety of models considered and approaches taken in these works, all of
them remain in the relatively idealistic setting where the samples used to train the models
of interest are identically and independently distributed (i.i.d.) with certain moment
conditions – very little work attempts to understand their behavior when the samples are
allowed to be dependent. In this work, we will first empirically examine why considering
only this setting is insufficient in Chapter 2, and instead make the case for considering an
alternate model for the randomness in the design, that of being right-rotational invariant.
This is a rich class of random designs which in particular allow for heavy dependence
between samples. Following this, in Chapter 3, we will then consider the behavior of
overparameterization in linear regression for these designs, studying both the minimum
norm setting as well as ridge regression. In Chapter 4, we will move to understanding how
one can choose the optimal ridge regularization parameter; as we will show, the generalized
cross validation in these problems is no longer consistent, and we present a provably
consistent alternative. Finally in Chapter 5, we return to the i.i.d. setting to analyze
random features models; we present partial progress on understanding the risks of these
models where the weights are taken to be right-rotationally invariant rather than Gaussian,
thereby moving closer to being able to understand deterministic designs. We give
conjectures under which our results hold, and provide computational evidence of their
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validity.
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1
The i.i.d. theory

1.1 Overparameterization in Linear Regression

As studying deep neural networks is analytically difficult, theoretical analyses of
overparameterization began with studying the out-of-sample risks of well-specified linear
regression. Concretely, one observes (X,y), such that

y = Xβ + ϵ, (1.1)

with y ∈ Rn, X ∈ Rn×p, and ϵ,β ∈ Rp. Hence n is the sample size, p is both the data
dimension and the parameter count, β is the signal, and ϵ is generally a component-wise
independent noise vector. Under an assumed data generating distribution for X, one then
examines some version of out-of-sample risk1 for a given estimator β̂(X,y), such as the

1The choice of this metric is varied. As our results follow those of [Has+22], we follow their convention
and use the design-conditional excess generalization error E[‖Xnewβ −Xnewβ̂‖22|X], but also studied is this
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usual least-squares estimator, or a ridge regularized variant. In particular, when p > n, the
least-squares estimator (X⊤X)−1X⊤y is not defined – replacing the inverse with the
Moore-Penrose inverse results in the minimum norm linear interpolator. For all works
surveyed below, X is assumed to have i.i.d. rows, and all quantities are scaled such that
the out-of-sample risk remains order 1 in the limit.

This problem is of course well understood in the classical setting, where p is fixed and n

is taken to infinity. Here, it is known that the least-squares estimator is the best linear
unbiased estimator, consistent, and has fluctuations

√
n(β̂ − β) distributed as

N(0, σ2(n−1X⊤X)−1).
With the rise of so-called “big data”, where the number of parameters is large compared

to the number of datapoints, attention has turned to settings where n and p grow together
to infinity. This is largely separated into three regimes of consideration. The first is when
p = o(n), which was studied as early as in 1988, with [Por88], which reobtains classical
guarantees in the setting where p = Θ(

√
n). If one considers p as the number of directions

one must learn, and n as the amount of information on hand, then in this setting, one still
has overwhelmingly more information than directions to learn, and hence it makes sense to
reobtain classical guarantees. The second regime is where p = ω(n). This setting has many
more directions to learn than datapoints given - as a result, structural assumptions such as
sparsity are generally necessary [CT07; Has15], where ‖β‖0 is generally assumed to grow
like o

(
n

log p

)
. Under such sparsity assumptions, the effective dimension is much lower, and

one is essentially back in the p = o(n) setting; hence similar results emerge [Büh11]. The
final regime is that where p = Θ(n). This is referred to as “linear” or “proportional”
asymptotics, and has received much attention since most classical results indeed break
down at this point, and yet it is still possible to derive interesting results without
assumptions on sparsity. In particular, these results are often quite different than those in
the classical setting (see e.g. [SC19; SCC19]).

Study of linear regression under proportional asymptotics began due to interests
independent of understanding double descent, and hence early results did not directly
examine the effects risks as a function of overparameterization (that is, how the risk

risk further conditioned on y and quantities such as E[‖ynew −Xnewβ̂‖22|X]. These are all largely equivalent
modulo additive noise constants due to concentration. See Appendix A.6.1 for details.
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changes as a function of the overparameterization ratio γ := p/n). While the earliest works
in this area, which began in the compressed sensing literature (e.g. [BM12]), were already
able to handle a deterministic signal vector β, the main line of research on which our work
builds began with β drawn from some delocalized prior, such as an i.i.d. product prior or
the uniform distribution on the sphere. In [Dic16], the author study the asymptotic risk of
ridge regression in the proportional limit. They assume a linear model, with the covariates
xi drawn from an isotropic Gaussian and the errors independently Gaussian. Extensions to
sufficiently regular covariances, as well as under relaxed assumptions, are presented in
[DW18], which derives asymptotic risks for predictors of the form xi = Σ1/2zi, with Σ

having controlled operator norm and zi having independent entries and bounded 12th
moment. These results utilize random matrix theory to characterize the high dimensional
limit, as the risks of interest fundamentally hinge on the spectrum of the empirical
covariance matrix; the need for these results from random matrix theory is partially the
reason for the moment conditions.

Figure 1.1: [ASS20, Figure 2C] – generalization error at various a variety of training times. α = 1/γ.
Note that this is not equivalent to the risk of minimum norm interpolation, as the training time to
convergence differs across α.

Amazingly, even this simple setting can reproduce the hallmarks of double descent. This
was noticed as early as in [ASS20] (see Figure 1.1). Here, the authors solve for the training
dynamics of gradient descent on the linear model, and in particular analyze the
generalization error as a function of γ. They find that when γ = 1, the left tail of the
eigenvalues of the Gram matrix X⊤X approaches zero, leading to “catastrophic
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overtraining” resulting from the eigenvalues of the inverse matrix (X⊤X)−1 exploding,
causes the model to generalize very poorly. The analysis is also in the high dimensional
limit, and again exploits jointly Gaussian data and labels, and furthermore analyzes the
effects of early stopping and ridge regularization in preventing the generalization error from
exploding near the interpolation threshold. The same model is studied, though with a
different framing, in [BHX20], along with a noise-free Fourier series model, where double
descent with respect to the parameter count is again observed. A much later work, [MG21],
shows that one can actually observe multiple descent peaks under certain settings on the
population spectrum.

The study of minimum norm linear regression is intimately related to that of the
solution obtained through gradient descent, since gradient descent naturally trains to the
minimum norm interpolator when initialized at zero2 if the learning rate is sufficiently
small3. Hence, this problem has received much attention over the past few years. Benign
overfitting, in this context, refers to when these minimum norm interpolators achieve near
optimal risk (among all ridge regularized variants); early works tried to derive conditions
under which this occurs. The overall understanding is that a few entities are crucial in the
analysis of benign overfitting: the spectra of the population covariance matrix Σ and the
empirical covariance matrix X⊤X/n, along with the alignment of the true signal vector β
with the top eigenvalues of Σ. Finite sample bounds on the test error, along with necessary
conditions for benign overfitting on the population covariance were derived in [Bar+20];
here, the authors find that the tail of the eigenvalues of Σ cannot decay too quickly.
Another result [KLS20] shows that if β is aligned with the top eigenvectors of Σ, then it is
also possible for the ridgeless limit to be optimal. The authors in this work provide further
mechanistic intuition to how this occurs: adding covariates with zero signal and small
variance to the regression problem can in fact provide implicit ridge regularization when
using minimum norm regression – in practice, this is provided by directions of small
variance with low correlation with the true signal, which are orthogonal to the signal. As a
result of this already present implicit regularization, the optimal ridge parameter is
required to be zero or even negative. The effect of this alignment of the signal with the

2This result is quite classical, see e.g. [Has+22, Proposition 1] for a proof
3The learning rate η must be less than 1/λmax(X

⊤X−1).
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covariance is further studied in [RMR20]; in fact, having this alignment is quite common in
real world datasets – see [LS23] for examples. Lastly, [WX20] also examines this problem
where β is drawn from an anisotropic prior, as well as the related problem of applying
weighted regularization.

A large number of these results were extended under relaxed assumptions in [Has+22],
employing truncation arguments to bypass moment conditions. The authors give finite
sample bounds for the out-of-sample risk for fixed β in a variety of settings, including
anisotropy and misspecification (where only a fraction of the relevant predictors are
observed). Most significantly, while prior works on linear models had all illustrated the
characteristic peaking effect of double descent, generally the optimal value of γ lay in the
underparameterized regime, which differs from the behavior of deep learning, wherein the
large models reign supreme. In contrast, [Has+22] displays that, under certain
misspecification settings, the optimal choice of γ can lie beyond 1, thereby obtaining a
setting aligning with modern practice, though the proposed misspecification structure is
somewhat ad-hoc. Improved finite sample bounds were then given in [CM22], which
furthermore moves away from the proportional asymptotic regime.

1.1.1 Cross-validation in high dimensions

Another issue that emerges in high dimensional inference is cross-validation.
Cross-validation is a method for selecting model hyperparameters (such as the ridge
regularization parameter) which has improved data efficiency as opposed to a strict
train-validate-test split. In practice, k-fold cross validation is usually used because it is
computationally light compared to the leave-one-out variant. However, [RM18] and
[Wan+18] both experimentally show that k-fold validation induces very large biases in high
dimensional settings, thereby rendering it useless. At the same time, both also show that
approximate forms of leave-one-out cross-validation (which remain computationally
tractable) for their respective problems still succeed in being consistent. This problem for
linear regression under proportional asymptotics was examined by [Has+22]; here, it is
shown that the usual leave-one-out cross-validation (LOOCV), as well as the related
generalized cross-validation (GCV), both are asymptotically (under proportional
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asymptotics) uniformly consistent on compact intervals. In turn, we will also study GCV
and LOOCV in our setting.

1.2 The Random Features Model

While the focus of this work will be on studying the effects of overparameterization in
linear regression, studying risk as a function of overparameterization is not entirely natural
in this setting. This is because the parameter count is directly tied to the data dimension.
In practice, on the other hand, one generally imagines having data of fixed dimension, and
then choosing a model of some complexity afterwards. A tractable model in which
parameter count can be isolated from data dimension is that of the random features model,
which has received much attention as well. Concretely, one considers a one-hidden layer
neural network with the first layer weights frozen and learns the optimal last layer weights.
That is, one observes (X,y) generated from some process, with X ∈ Rn×d and y ∈ Rn.
Instead of trying to learn a linear model as before, one chooses a weight matrix F ∈ Rd×p.
Note that the data dimension is now d instead of p, and that p is now used to denote the
parameter count. As in the forward pass of a neural network, one now computes the
featurization σ(XF) ∈ Rn×p, where σ : R → R is some prescribed activation function
applied component-wise. From here, one performes (possible regularized) linear regression
of y onto σ(XF), yielding some estimated final layer weights a, and producing the
estimator f̂ : x 7→ a⊤σ(F⊤x).

This is called the random features model because the feature map F is drawn from some
distribution, often having i.i.d. Gaussian entries; note that it is not learned. The samples
in X are usually taken to be i.i.d standard Gaussian. This model, with linear activations,
was studied in [ASS20], though only empirically; the Fourier series model studied in
[BHX20] is somewhat similar in spirit.

Results for this model again are derived under proportional asymptotics, where one takes
n, p, d → ∞, with n/p and p/d converging to constants. The final section of [HTF01]
derives the asymptotic variance of this model when the random weights are taken to be
i.i.d. Gaussian, and the activation satisfies E[σ(Z)] = 0 and E[σ(Z)2] = 1, where
Z ∼ N(0, 1). The picture is completed by [MM19], which fully solves the asymptotic risk of
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these models (though now the weight matrix has columns which are i.i.d. from the sphere).
These methods directly leverage the fact that the weights are i.i.d., as they largely hinge on
using the leave-one-out method to compute resolvents of a suitably constructed matrix.
The double descent curves obtained in [MM19] feature global minima which lie in the
overparameterized regime, thus illustrating a setting fully showcasing all hallmarks of
double descent without the need of a somewhat arbitrary choice of misspecification. The
case of random features kernel regression, which can be viewed as an infinite width limit of
this setting, is examined in [AP20b], where the same double descent curves are obtained;
the behavior of this model when the inputs have some covariance is examined in [MP22].

Two key observations are made in these works. The first is that the risk of random
feature regression is equivalent to that of a linear model with a certain choice of covariance.
This inspired the works [DL20; HL20], which explicitly show this equivalence using the
Lindeberg method, and use this equivalence to compute the asymptotic risks. Specifically,
one decomposes the activation function in the Hermite basis (a basis of polynomials that
form an orthonormal basis for L2(R,Φ), where Φ refers to the standard Gaussian measure).
We assume the normalization condition EZ∼N(0,1)[σ(Z)] = 0. One can then write
σ(x) = µ1x+ σ⊥(x), where c1 is the first order Hermite coefficient and σ⊥(x) contains the
remaining terms of the Hermite expansion. From the fact that the Hermite polynomials are
an orthonormal basis, σ⊥ satisfies E[Z · σ⊥(Z)] = E[σ⊥(Z)] = 0, and
E[σ⊥(Z)

2] = (E[σ(Z)2]− µ2
1)

1/2 =: µ2. Then, miraculously, even though σ⊥(Z) is only
uncorrelated with Z, in fact, asymptotically, it acts fully independently! That is, as
n, p, d → ∞, the random features model, which uses features of the form
σ(F⊤x) = µ1F

⊤xi + σ⊥(F
⊤xi), assumes the same train and test risk as a linear model

using features of the form µ1F
⊤xi + µ2zi (provided F has i.i.d. suitably normalized

Gaussian entries), where zi is a fully independent Gaussian. See [HL20] for further details.
The second is that random features models are only capable of learning linear functions

of the data [AP20a; MM19], unveiling a fundamental ceiling to how much one can
understand by studying this model. Of course, such things are not true in practice, and
thus these limitations are consequences of random features models failing to capture the
significant mechanism of feature learning, since their weight matrices are fixed. Exciting
work in this direction has occurred recently – see [Ba+22; Dan+23; Mon+24], which show
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that with some gradient steps, the higher degree Hermite portions of a given target
function can be learned.
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2
When the i.i.d. theory fails

In this section, we empirically examine the behavior of the out-of-sample risk as the design
departs from the i.i.d. setting. We begin in totally synthetic settings, where the design X,
the signal β, and the noise ϵ are generated purely randomly, and observe what can occur
as the design X gains correlation between rows or grows fatter tails. Afterwards, we move
to a semi-synthetic setting, where the design is a real dataset, but the signal and noise are
still generated. Here, we show that in these settings, the assumption that the rows are i.i.d.
can cause the predictions for the behavior of such models to become biased. In the
chapters that follow, we present formulas for the risk which capture the behavior of the risk
by modeling the design as right-rotationally invariant (to be precisely defined in
Chapter 3), producing a better characterization of the risk in the settings we examine.
That these designs can be used to better characterize real-world datasets has been
analyzed in prior work, such as in [LS23]. The details for all experiments below can be
found in Appendix A.5.2.
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2.1 Preliminaries

In the simulations of this chapter, following existing literature, [CM22; Has+22], we
measure the following notion of out-of-sample risk (see Appendix A.6.1 for discussion):

RX(β̂,β) =
1

n′E
[∥∥∥Xnewβ̂ −Xnewβ

∥∥∥2∣∣∣∣X] . (2.1)

where Xnew is some independent matrix of dimension n′ × p. If Xnew has i.i.d. rows, then
all settings of n′ are equivalent. In this chapter, β̂ will always be the usual OLS estimator
when n ≤ p, and the minimum norm estimator β̂ = (X⊤X)+X⊤y when p > n.

The extensive literature on the setting where the rows are i.i.d. gives predictions on the
out-of-sample risk above for quite general conditions on the covariance Σ and signal vector
β. Here, we compare those predictions given for the isotropic setting (wherein the
alignment of β no longer matters) with the predictions give by our right-rotationally
invariant theory.

2.2 Synthetic Settings

Figure 2.1 illustrates multiple synthetic settings in which we plot the predictions given by
the i.i.d. theory as well as our own. The last three illustrate cases that are covered by our
right-rotationally invariant theory but not that of the i.i.d. theory. We examine the
following four settings, and give potential areas in which they could emerge:

1. I.i.d. data: as expected, the predictions from the i.i.d. theory hold, as do ours. The
data here are i.i.d. Gaussians, which are provably right-rotationally invariant, but we
note that the same results are found for other distributions of covariates, such as
suitably scaled uniform and Rademacher random variables (see Appendix A.1).1

1One may question why our finite sample risks do not match the theoretical predictions as well as those
in [Has+22] – the reason for this is somewhat subtle. The first version of the publication focused on β
drawn from an isotropic prior, and hence the risks they show have additional averaging. The paper was
subsequently updated for fixed β, but the plots were not changed.
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Figure 2.1: Solid lines display the theoretical predictions of the risk; dotted points show finite sample
realizations, plotted over a range of the aspect ratio γ. The dimension of all designs is n = 200,
p = [γn]. All settings suitably scaled so that each column has variance 1 and mean 0. For the
equicorrelated cases, the common correlation is ρ = 0.6. For the autoregressive case, ρ = 0.8.

2. Equicorrelated data: X ∈ Rn×p has independent columns, but each column is
distributed as a multivariate Gaussian with covariance matrix Σ, where Σij = ρ if
i 6= j, and Σii = 1. One can imagine that if the design contains data gathered from
individual populations, then groups sharing a certain latent factor (such as location)
naturally have correlated covariates. If one tries to assume that the rows are still
i.i.d., this produces naturally biased predictions for the risk:

3. Autocorrelated data: One could also imagine that the rows of X are drawn from some
time-series. In such settings, it is natural for the rows to be autocorrelated. Here, the
rows of X satisfy xi = ρxi−1 +

√
1− ρ2ϵi, where ϵi are i.i.d. draws from N(0, In).

4. t-distributed data: Prior results, as discussed in Chapter 1, generically assume some
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moment conditions on the covariates x. It is questionable whether certain types of
data, such as financial returns, satisfy such conditions, due to having much heavier
tails [Gro21]. Here, we examine the behavior when the rows of X are drawn from a
multivariate t distribution, with mean 0 and scale parameter 1/3, so that the
variance of any column remains 1.

2.3 Semi-synthetic Settings

It is not surprising that our theory out-performs the i.i.d. theory for the designs
constructed above. We now examine semi-synthetic settings, in that the design X is from a
real dataset, but the signal β and the noise ϵ are generated. We then empirically estimate
the risk RX by testing the fitted β on a (real) test data set.

2.3.1 Speech data

As studied in [LS23], we examine designs where each row consists of an i-vector of a speech
segment (see [IR18]). Full experimental details can be found in A.5.2. Figure 2.2 illustrates
that our predictions better match the behavior of these models, primarily in the
overparameterized regime. That the gap to the i.i.d. prediction increases as σ2 is increased
points to the fact that treating the design as right-rotationally invariant may better
capture the variance in the estimator.

2.3.2 Financial Data

The next type of design we examine is that of minutely residualized returns2 of various
stocks. One can think of trying to predict a linear function of residualized returns as trying
to reconstruct the components of a given portfolio given its residualized returns by
regressing it onto the residualized returns of its constituents (see Section 3.5.3 for more).

A natural reason for autocorrelated rows emerges in such a setting. If one has, for
instance, the return of a given stock over the past 5 minutes in each row, but measures this

2See Appendix A.5.2 for details on residualized returns, including our residualization process.
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Figure 2.2: Speech data. Here, the design has p = 400, and n = [p/γ]. When varying σ2, r2 is held
fixed at 1. For varying r2, σ2 is held fixed at 1. RiRI pred. refers to the prediction given by our right-
rotationally invariant theory; i.i.d. pred refers to the prediction given by the i.i.d. theory.

every 1 minute, then naturally successive rows possess very high correlation, because they
look at an overlapping period of 4 minutes. Figure 2.3 presents the behavior of the risk
when this occurs. Here, k refers to the number of minutes of returns each row contains. So
if k = 1, each row contains the returns over the previous minute, and thus there is no
overlap, since we observe all returns every minute. If k = 3, there a 2 minute overlap
between successive rows, producing autocorrelation. Experimental details are in A.5.2.

Note that even when k = 1, our characterization better predicts the behavior of the risk,
potentially due to the heavy tails that are present in financial data. When k > 1 and there
is autocorrelation between rows, the risk explodes more quickly on both sides of the
interpolation boundary γ = 1; the predictions from the i.i.d. theory fail to adjust for this,
but our predictions are still somewhat accurate.
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Thus, from these examples it is clear that the i.i.d. assumption is not always an accurate
characterization of designs that arise in real-world datasets. We now shift to a discussion of
our theoretical analysis of the risks of right-rotationally invariant designs. We defer
discussion of a fully real experiment to Section 3.5.3.
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Figure 2.3: Risks for various settings of k. Top plot and bottom plot of each column are the same,
just with different y scale to better show the behavior near the top and bottom of the plot. RiRI
pred. refers to the prediction given by our right-rotationally invariant theory; i.i.d. pred refers to the
prediction given by the i.i.d. theory.
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3
Benign overfitting beyond i.i.d.

As discussed earlier, our theory is rooted in modeling the data X as being right-rotationally
invariant – this is a rich class of designs which allow for tractable analysis while also
capturing potential dependence between datapoints. In this chapter, we study certain
out-of-sample risks for linear regression when the design is modeled in this manner.

3.1 Preliminaries

Definition 3.1 (Right rotationally invariant design). A random design matrix X ∈ Rn×p is
right rotationally invariant if for any O ∈ O(p), one has XO

d
= X, where O(p) denotes the

group of p× p orthogonal matrices. Equivalently, let X = Q⊤DO be the singular value
decomposition of X. Then X is right rotationally invariant if and only if O is independent
of (Q,D) and O drawn from the Haar measure on O(p) - that is, it is uniformly
distributed on O(p). See Lemma A.2 for proof of equivalence.
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Note that the isotropic Gaussian is a specific case of a right-rotationally invariant design,
wherein Q is also Haar, independently of (D,O). As we will see, our analysis allows us to
reobtain the results of [Has+22] for isotropic Gaussians, since it is well understood that the
entries of D converge weakly to the square root of the Marchenko-Pastur law. Without loss
of generality, we will assume that the entries on the diagonal of D are sorted such that
D11 ≥ D22 ≥ · · · ≥ Dmin(n,p),min(n,p) ≥ 0.

These designs have recently received much attention as alternatives to fully Gaussian
designs for theoretical analysis in a multitude of works, notably [DSL23; Fan22; RSF19].
See [LS23] for a more comprehensive list of related works. Crucially, [DSL23] shows that,
under certain spectral conditions, the behavior of high dimensional matrices is largely
dictated by their spectrum, and in fact will “act” similarly to a right rotationally invariant
matrix with the same spectrum. As a result, studying these designs may be suggestive of
behavior arising in more general non-Gaussian models.

Some other examples of right-rotationally invariant designs, in addition to those
presented in Chapter 2, are as follows:

1. products of Gaussian matrices: X = X1X2 · · · · ·Xk, where X1 has n rows and Xk

has p columns, while the remaining dimensions are arbitrary.

2. spiked matrices: X = λVW⊤ +G, where V ∈ Rn×r and W ∈ Rp×r are the first r
columns of two Haar matrices.

See [LS23, Figure 1] for more.
In essence, right rotationally invariant ensembles allow us the additional degree of

freedom of allowing some dependence between rows, and allowing us to set the singular
value distribution of the design of interest.

At the same time, the fact that O is Haar does add some restrictions - in particular, the
designs we consider are now necessarily isotropic.

Lemma 3.1. Let X = Q⊤DO be right rotationally invariant. Then
E[X⊤X] = Tr(E[D⊤D])/p · Ip.
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Proof. Let O have rows oi. Then

E[X⊤X] = E[O⊤D⊤DO] =

n∧p∑
i=1

E[D2
iioio

⊤
i ] =

n∧p∑
i=1

E[D2
ii]E[oio

⊤
i ]

(∗)
=

1

p
Ip

n∧p∑
i=1

E[D2
ii] = Tr(E[D⊤D])/p · Ip

where (∗) follows from Ip = E[O⊤O] =
∑p

i=1 E[oio
⊤
i ] and the exchangeability of the oi

(which is derived from the fact that O(p) contains the permutation matrices).

In prior analyses, the spectrum of Σ defines the problem geometry. For us, we sacrifice
this degree of freedom for the ability to set the spectrum D to capture distributions
beyond those of i.i.d. rows.

3.2 Notation and Setup

We study the linear regression posed in (1.1) when X is right-rotationally invariant.
Specifically, we observe the pair (X,y), where X ∈ Rn×p is a right-rotationally invariant
design and y ∈ Rn is generated via

y = Xβ + ϵ. (3.1)

We take β ∈ Rp to be fixed and ϵ to have independent entries with mean 0 and variance σ2.
The problem we consider will be the expected out-of-sample risk on an independent

draw from a new, potentially different right rotationally invariant design,
Xnew = Q⊤

newDnewOnew, with Xnew ∈ Rn′×p. This corresponds, for example, to the setting of
learning a model on one interdependent population (such as medical data from some
population), and using the model on a separate interdependent population. As mentioned
in the preceeding chapter, the explicit risk we examine, following [CM22; Has+22], is

RX

(
β̂(X,y),β

)
=

1

n′E
[∥∥∥Xnewβ̂ −Xnewβ

∥∥∥2∣∣∣∣X] . (3.2)
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This setting is comparable to the isotropic setting in [Has+22] (though see Section 3.2.1 for
differences in scaling). Though only the Gaussian setting is explicitly covered by our
designs, we believe that they should in fact hold in general for isotropic data, similarly to
the universality posed in [DSL23]. See Appendix A.1 for some evidence of this universality.

Most of our results will be stated in terms of finite sample bounds. Occasionally we will
consider the asymptotics as n, p → ∞ where p/n → γ ∈ (0,∞). In such cases, we may
further assume that the entries on the diagonal of D converge weakly to some distribution
µD in a certain sense, to be detailed later on. A helpful working example is to think of X
as having i.i.d. entries distributed as N(0, 1/n). Then the entries of D converge to the
square root of the Marchenko-Pastur law with parameter p/n.
Remark 1. One can ask why we do not consider the problem of dependent prediction. In
particular, we could try partitioning the rows and columns of X and y as X = [X⊤

1 ,X
⊤
2 ]

⊤

and y = [y⊤
1 ,y

⊤
2 ]

⊤, where X1 ∈ Rn1×p and y1 ∈ Rn1 , while X2 ∈ Rn2×p,y2 ∈ Rn2 , with
n1 + n2 = n. We then try using (X1,y1) to learn β̂1, and then calculate the risk

1

n2

E
[
‖X2β̂ −X2β‖2 | X1

]
.

Note here that X1 and X2 would then have some complex dependence due to being drawn
jointly from the right rotationally invariant ensemble. This, for example, corresponds to
learning some model for predicting a certain quantity based on the first n1 timesteps of an
autocorrelated time series, and then using it to predict on the next n2 timesteps.

This computation can indeed be done using a certain result for conditioning on Haar
matrices that exists in the literature [RSF19, Lemma 4]. The problem is that the resulting
form of the risk is quite complicated and depends on Q, for which we have no
distributional assumptions. The result is quite uninterpretable and provides no insights,
and hence is not pursued – see Appendix A.2.1 for extended discussion.

3.2.1 Nuances on Scaling

Recall that for our setting, we have E[X⊤X] = O(1) · I, while when the rows of X are i.i.d.
draws from some prescribed distribution with identity covariance, one would instead expect
E[X⊤X/n] = I. As such, one should think of X in our setting as akin to the normalized
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matrix X/
√
n in the i.i.d. setting. Furthermore, D⊤D will be a diagonal matrix containing

the eigenvectors of X⊤X. This scaling ensures that, for example, in the setting where the
entries are distributed as N(0, 1/n), that ‖D⊤D‖op = O(1). Only in this way is it natural
to consider the entries of D as converging to some limiting distribution µ as n, p → ∞ with
p/n → γ. In the Gaussian case, this would be the Marchenko-Pastur law with parameter γ.

The consequence of this is that in order to maintain the signal to noise ratio, we must
have β having norm on the order of

√
n. This will cause some of our results to superficially

look different than those in [CM22; Has+22].

3.3 Useful Results

We collect a few useful results before we begin. First, we will often require the
concentration of quadratic forms v⊤Av, with v uniform on the sphere and A fixed or
independent. As the uniform distribution on the sphere has dependent coordinates, the
standard Hanson-Wright inequality does not apply, and instead we use the following
Hanson-Wright inequality for spherical vectors.

Lemma 3.2 (Hanson-Wright for Spherical Vectors). Let v ∈ Rn be a random vector
distributed uniformly on Sn−1 and let A ∈ Rn×n be a fixed matrix. Then

P(
∣∣v⊤Av − E[v⊤Av]

∣∣ ≥ t) ≤ 2 exp

(
−Cmin

(
n2t2

2K4‖A‖2F
,

nt

K2‖A‖

))
.

for some absolute constants C,K.

Proof. Isoperimetric inequalities imply that vectors uniformly distributed on Sn−1 satisfy
convex concentration (see [Sch14]) with constant K/

√
n, for some absolute constant K,

where we note that having sub-Gaussian tails around the median is equivalent to having
them around the mean (see e.g. [Cha22]). We can then apply [Ada14, Theorem 2.3] and
rescale. Alternatively, one should also be able to view v as a renormalized Gaussian, then
apply standard Hanson-Wright and separately control the norm of the Gaussian using the
Bernstein inequality.

We now present a simple lemma for computing the expectations in Hanson-Wright.
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Lemma 3.3 (Expectations of Quadratic Forms). Let v be uniformly distributed on Sn−1,
and let A be an n× n matrix. Then

E[v⊤Av] = Tr(AE[vv⊤]) =
Tr(A)

n
(3.3)

Proof. The first equality is clear. The second can be seen to follow from the observation
used in the proof of Lemma 3.1 and the fact that columns of a Haar distributed matrix are
uniform on the sphere (see e.g. [Mec19]). Alternatively, recall that for g ∼ N(0, In),
g

∥g∥ ⊥⊥ ‖g‖. Hence

E[vv⊤] = E[gg⊤/‖g‖2] = E[gg⊤]/E[‖g‖2] = In/n.

3.4 Some notation

As detailed in Chapter 1, of central importance in the study of this problem is the
empirical spectral distribution of the Gram matrix X⊤X. While in prior works, heavy
machinery from random matrix theory is introduced to handle this problem, either
explicitly as in [DW18; Has+22], or implicitly using self-contained leave-one-out type
arguments, as in [Bar+20; CM22], we have somewhat abstracted out these difficulties by
admitting explicit access to the spectrum through D. As one will see in the results ahead,
this gives our results a much different flavor than those of [Bar+20; CM22; DW18;
Has+22] – in particular, the concentration of the bias and variance, for us, will be stated
around empirical quantities involving the spectrum of the realized training data X, while in
these previous works, they are around nonrandom, global quantities, such as the covariance
matrix Σ and its alignment with the signal vector β.

The Stieltjes transform is a fundamental object in the study of the spectra of random
matrices. While we will never need its full abilities in our analyses, we borrow some
notation to simplify some results ahead.

Definition 3.2. The Stieltjes transform of a measure µ on R is a complex function
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m(µ, z) : C → C defined as

m(µ, z) = EX∼µ

[
1

X − z

]
=

∫
R

1

x− z
dµ(x). (3.4)

Generally, one may restrict the domain to the region outside the support of µ.
In our analysis, we will mostly care when µ is the empirical distribution of the entries of

D⊤D. We define µD⊤D = 1
p

∑n∧p
i=1 δD2

ii
+ max(0,p−n)

p
δ0, and hence, with some abuse of

notation, let

mD(z) = m(µD⊤D, z) =
1

p

n∧p∑
i=1

1

D2
ii − z

− max(0, p− n)

p

1

z
. (3.5)

Occasionally it will also be useful to consider the companion Stieltjes transform, which is
the Stieltjes transform of the empirical distribution of DD⊤. We will write

vD(z) = m(µDD⊤ , z) =
1

n

n∑
i=1

1

D2
ii − z

− max(0, n− p)

n

1

z
. (3.6)

These two quantities are directly related. Direct calculation produces, amongst other
identities,

vD(z) +
1

z
= γ

(
mD(z) +

1

z

)
(3.7)

zv′D(−z)− 1

z
= γ

(
zm′

D(−z)− 1

z

)
(3.8)

vD(−z)− zv′D(−z) = γ (mD(−z)− zm′
D(−z)) . (3.9)

3.5 Risk on an independent population

We begin with the setting where the risk is evaluated on an independent sample
Xnew = Q⊤

newDnewOnew. Here, the risk admits a familiar bias-variance decomposition.
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Lemma 3.4.

RX

(
β̂(X,y),β

)
=

nE[Tr(D⊤
newDnew)]

n′p
·

 1

n
‖E[β̂ | X]− β‖22︸ ︷︷ ︸

BX(β̂,β)

+
1

n
Tr(Cov(β̂ | X))︸ ︷︷ ︸

VX(β̂,β)

 .

Proof. The proof is standard and deferred to Appendix A.2.2.

We refer to BX as the bias and VX as the variance.

3.5.1 The Risk of Ridgeless Regression

The ridgeless estimator, or minimum norm estimator, takes the form β̂ = (X⊤X)+X⊤y,
where + denotes the Moore-Penrose pseudoinverse. We can plug this in directly to
Lemma 3.4 to compute the bias and variance.

Theorem 3.1. When β̂ = (X⊤X)+X⊤y, then

VX(β̂,β) =
σ2

n
Tr((D⊤D)+) =

σ2

n

n∧p∑
i=1

1

D2
ii

(3.10)

If n ≥ p, then

BX(β̂,β) = Bn = 0,

and when n < p, then one has ∣∣∣BX(β̂,β)− Bn

∣∣∣ = ‖β‖2

n
δn (3.11)

with
P(|δn| ≥ t) ≤ 2 exp

(
−Cpmin

(
p

n
· t2

2K4
,

t

K2

))
. (3.12)
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where

Bn =
‖β‖2

n

(
1− min(n, p)

p

)
. (3.13)

Proof. We begin with the variance. Pseudoinverse properties yield

VX(β̂,β) =
1

n
Tr(Cov(β̂ | X)) =

1

n
Tr(Cov((X⊤X)+X⊤ϵ | X))

=
1

n
Tr((X⊤X)+X⊤Cov(ϵ)X(X⊤X)+) =

σ2

n
Tr
(
(X⊤X)+

)
=

σ2

n
Tr((D⊤D)+)

For the bias,

BX(β̂,β) =
1

n
‖E[β̂ | X]− β‖22 =

1

n
β⊤(I− (X⊤X)+(X⊤X))2β

=
1

n
β⊤(I− (X⊤X)+(X⊤X))β

=
1

n
‖β‖22

(
1− 1

‖β‖22
(Oβ)⊤(D⊤D)+(D⊤D)(Oβ)

)
.

Note now that b = (Oβ)/‖β‖ is uniformly distributed on the sphere. Furthermore, let
P = (D⊤D)+(D⊤D), and note that Pii = 1(i ≤ min(n, p)), so ‖P‖2F = Tr(P) = min(n, p)

and ‖P‖ = 1. Note that if p ≤ n, then P = I, and this term is exactly zero.
If p > n, then we can apply Lemma 3.2 and 3.3 to find

P(
∣∣b⊤Pb− n/p

∣∣ ≥ t) ≤ 2 exp

(
−Cmin

(
p2t2

2K4n
,
pt

K2

))
.

The results in [Has+22] are stated in terms of rates. We opt for the presentation in
(3.12) because this is more illustrative of the quantities governing how the constant factors
governing how concentrated the bias is. We can provide rates in the following easy
corollary of the above; these are generally stated in the context of proportional
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asymptotics; hence once should consider γ a fixed constant while n, p → ∞ together.

Corollary 3.5. If n < p, then for any positive integers k and D, for n = Ωk,D,γ(1), with
probability at least 1− n−D, one has∣∣∣BX(β̂,β)− Bn

∣∣∣ ≤ ‖β‖2

n
· n− 1

2
+ 1

k (3.14)

Proof. The proof is direct calculation. Continuing with the same notation as above,

P(
∣∣b⊤Pb− n/p

∣∣ ≥ t) = 2 exp

(
−Cmin

(
γ2 nt2

2K4
, γ

nt

K2

))
,

where γ = p/n. Hence taking t = n−1
2
+

1
k , this becomes

P(
∣∣b⊤Pb− n/p

∣∣ ≥ n−1
2
+

1
k ) ≤ 2 exp

(
−Cmin

(
γ2 n

2/k

2K4
, γ

n1/2+1/k

K2

))
.

which is bounded above by n−D whenever n is sufficiently large in terms of D, k, γ (hence
ΩD,k,γ(1)), as desired.

Remark 2. One of the main improvements of [CM22] over prior work was the derivation of
multiplicative bounds, as compared to additive ones in [Has+22]. Manipulating (3.14)
produces an entirely uninteresting multiplicative bound of the form∣∣∣BX(β̂,β)− Bn

∣∣∣ ≤ 1

1− n/p
n− 1

2
+ 1

k · Bn. (3.15)

This reflects the same condition that p/n is bounded away from 1 that is present in the
multiplicative bounds of [CM22]. As the bias vanishes (as it does when γ = 1), our ability
to control relative fluctuations deteriorates.

Remark 3. The rate of n−3/2 present in (3.14) is maybe at first surprising, but this should
not be interpreted as an improvement over the classical O(n−1/2) rates present in the finite
ridge regression results of [CM22; HTF01], which is expected to be tight in the i.i.d. setting
through a central limit theorem heuristic. The additional factor of n−1 present in the
statement is simply a consequence of our scaling, as discussed in Section 3.2.1. In short, to
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compare our results with pre-existing ones in [Bar+20; CM22; Has+22], one should think
of X in our work as corresponding to the normalized matrix X/

√
n in prior works, and as a

result, one should think of ‖β‖ as having order O(
√
n), which recovers the original rate.

Additionally, [CM22; Has+22] both derive worse rates for the ridgeless setting than for
finite ridge regression. For example [Has+22], which derives an O(n−1/7) rate on the bias
for ridgeless regression, while maintaining the likely-tight O(n−1/2) rate for finite ridge
regression. This is likely due to the fact that our quantities are in terms of the empirical
spectrum of our observed design matrix (hence in some sense more data-dependent), which
also dramatically simplifies the analysis; on the other hand, fully analytic forms are derived
in these works.

Comparison to the isotropic Gaussian setting

The designs covered by both our theory and that of [CM22; DW18; Has+22] is that of the
isotropic Gaussian. As expected, we hence produce the same results (see e.g. [Has+22,
Theorem 1]) asymptotically. For our risk, written in Lemma 3.4, one takes n′ = 1; since
our design is scaled down by a factor of

√
n, we have

E[Tr(D⊤
newDnew)] = Tr(E[Tr(X⊤

newXnew)]) = Tr(E[Ip/n]) = p/n,

and thus the multiplicative factor simplifies to 1, leaving only the bias and variance.
In such cases, the empirical spectral distribution of D⊤D converges to the

Marchenko-Pastur law. Provided γ is bounded away from 1, the support of the distribution,
outside of the spike at zero, is bounded away from zero and compactly supported. Hence
the function x 7→ 1/x is a bounded positive function, and thus Portmanteau implies

VX(β̂,β) =
σ2

n

n∧p∑
i=1

1

D2
ii

a.s.−−→ m(µMP(γ), 0) =


γ

1−γ
for γ < 1,

1
γ−1

for γ > 1.

One of the key improvements of [CM22] was the finding that the rate of concentration of
the variance is in fact O(1/n) rather than O(1/

√
n). This can be thought of as a

consequence of the fact that linear spectral statistics of many classes of random matrices
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concentrate at the rate O(1/n) rather than the expected O(1/
√
n), and this fact indeed

gives us the O(1/n) convergence rate of the variance to its limit – see [BS04; LP09].

3.5.2 Finite Ridge Regularization

Computations for the finite ridge setting are identical to those in Theorem 3.1 and hence
we state only the results here and defer the proof to Appendix A.3.1.

Theorem 3.2. When β̂ = (X⊤X+ λI)−1X⊤y, then

VX(β̂,β) =
σ2

n
Tr
(
(D⊤D+ λI)−2D⊤D

)
=

σ2

n

n∧p∑
i=1

D2
ii

(D2
ii + λ)2

=
σ2

n

n∑
i=1

[
1

D2
ii + λ

− λ

(D2
ii + λ)2

]
= σ2(vD(−λ)− λv′D(−λ))

= σ2γ(mD(−λ)− λm′
D(−λ)), (3.16)

and ∣∣∣BX(β̂,β)− Bn

∣∣∣ = ‖β‖2

n
δn where Bλ,n = λ2m′

D(−λ) =
λ2

γ
v′D(−λ) +

γ − 1

γ
, (3.17)

where

P (|δn| ≥ t) = 2 exp

(
−Cpmin

(
t2

2K4 1
p
‖P‖2F

,
t

K2

))
(3.18)

and

P = diag

(
λ2

(D2
ii + λ)2

)p

i=1

. (3.19)

Note that 1
p
‖P‖2F ≤ 1 always; hence the denominator never explodes, nor does it grow

with n. One can derive similar rates as to Corollary 3.5 using the same method – these are
stated in Appendix A.3.1.
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Comparison to the isotropic Gaussian setting

When the design is taken to be isotropic Gaussian, the forms are again equivalent to the
asymptotic forms derived in, for instance, [DW18; Has+22]. As in the ridgeless setting, one
has O(1/n) rate of convergence for the variance towards its limit, and O(1/

√
n) for the

bias.

3.5.3 Empirical Takeaways - An attempt at real data

What does this theory tell us about when a design should be “right rotationally invariant”
in practice? Recalling the properties required for results within this chapter, one must have
that the features are generally uncorrelated. Furthermore, that O is Haar somewhat
reflects that the design must be agnostic to any “direction” – in particular, this means that
β must not align well with any of the eigenvectors of the Gram matrix X⊤X, since these
are just the rows of O in the SVD X = Q⊤DO. This is somewhat similar to what was
discussed in Chapter 1, where whether β aligns with the top eigenvectors of Σ affects the
behavior of the model quite a bit. Methods for handling this in a different
right-rotationally invariant setting have been presented in [LS23].

In this section, we discuss an experiment on real data. The issue with such experiments
is that risk predictions require knowledge of the magnitude of the true signal and noise
(though we will discuss doing estimation for these quantities in the well-specified setting in
Chapter 4), and in reality, these quantities may also be varying over time. One setting that
allows at least explicit computation of the signal is that of regressing an electronically
traded fund (ETF) (specifically any one tracking the S&P500 index) onto its constituents.
The signal here is publicly available, and moreover, due to the linear nature of PCA, a
rescaled version (due to standardization) still holds for the residualized returns.

Due to data quality issues, we could not gather return data for all stocks within the
index (only around 70%). The movement of these missing stocks then became the noise in
our setting - we can estimate the variance σ2 by subtracting the return computed on the
known stocks from the return of the ETF.

Unfortunately, this experiment did not work well, as show on the right hand side of
Figure 3.1. The i.i.d. predictions do equally well or even better than our right-rotationally
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invariant ones. When one tries to induce autocorrelation as discussed in Chapter 2, the
noise itself becomes autocorrelated, and hence the behavior of the model is outside both
regimes of theory, leading to curious behavior.

Figure 3.1: Fitting the S&P500. Predicted vs true MSEs. Left plot has synthetically generated signal
and noise, where the signal has the same norm as the true signal and the noise has the same norm as
true noise. Middle is signal fixed to the true vector, noise is resampled of the same magnitude. Last
plot is true signal and true noise in data.

Instead of using the true signal vector, if one tries a semi-synthetic experiment, where
the true vector is taken instead to be of the same norm, but drawn uniform on the sphere,
and the noise is resampled with the same magnitude, our theory does work, and works
better than the i.i.d. predictions. This is illustrated in the left plot of Figure 3.1.

Taking a step back towards reality, if one fixes the signal vector as the truth, but
resamples the noise of the same magnitude, the performance begins to deterioriate, as
illustrated in the center plot of Figure 3.1. This seems to suggest that at least part of the
gap between prediction and theory is this alignment problem discussed earlier on, since if
the vector is uniform on the sphere, its alignment with any given eigenvector of the
covariance matrix is guaranteed to be quite small (in the literature, this is called being
“incoherent”). Part of the reason this true vector has such good alignment is that most of
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the weight is actually concentrated on a small number of stocks, namely the largest ones,
and moreover these largest ones dictate most of the market’s movement, hence possibly
leading to alignment with the top eigenvectors, even after residualization. As a result, the
signal vector is not very “delocalized,” compared to when it is drawn from the sphere.
Another possible reason why the realized test MSE is so low is that the noise is probably
not independent of the signal; the noise is composed of the movement of the stocks we do
not observe; these are again correlated with global market movements, which our
residualization scheme is not good enough to remove, and hence likely why the realized test
losses are so much lower – notably, our right-rotationally invariant scheme does better
capture the shape of the loss curve as a function of γ, even though the values are biased.
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4
Generalized cross validation

In practice, one wishes to find principled ways in which to choose the optimal ridge
regularization parameter λ for the given data distribution. As mentioned in Chapter 1, the
standard k-fold cross-validation is often invalid in high dimensional settings [RM18;
Wan+18], while it is possible for leave-one-out cross-validation (LOOCV) and the
generalized cross-validation (GCV) to be consistent, as in the case of linear regression with
i.i.d. rows [Has+22]. We begin by reviewing the form of these two terms; while the
LOOCV is not tractable to analyze in our setting, we can show that the GCV is
inconsistent, and in turn we propose a provably consistent alternative.

4.1 Preliminaries

Leave-one-out cross-validation is a method for estimating the out-of-sample performance of
any estimator – we will focus on the setting where this estimator is β̂λ, the ridge estimator
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with regularization parameter λ. Here, the LOOCV error of β̂λ is given by

LOOCVn(λ) =
1

n

n∑
i=1

(
yi − x⊤

i β̂
−i

λ

)2
(4.1)

where β̂
−i

λ denotes the ridge solution where the i-th datapoint is omitted. Note that this
visibly appears to be an estimate of E(ynew − x⊤

newβ̂λ)
2. While in practice, refitting β̂

−i

λ for
every i ∈ [n] is expensive, within ridge regression, there exists a well-known shortcut
formula allowing practicioner to only fit one estimator. Specifically, using the
Sherman-Woodbury-Morrison formula, one can show

LOOCVn(λ) =
1

n

n∑
i=1

(
yi − x⊤

i β̂λ

1− (Sλ)ii

)2

(4.2)

where Sλ = X(X⊤X+ λI)−1X⊤ is the smoother matrix.
Generalized cross-validation was proposed in [GHW79] as a rotationally invariant

alternative to LOOCV.

GCVn(λ) =
1

n

n∑
i=1

(
yi − x⊤

i β̂λ

1− Tr(Sλ)/n

)2

=
1

n− Tr(Sλ)

n∑
i=1

(
yi − x⊤

i β̂λ

)2
(4.3)

Comparing to (4.2), we have replaced (Sλ)ii with the average Tr(Sλ)/n; note furthermore
that because we now take the trace the GCV is invariant to rotations of the data. That is,
consider fitting a linear model on (XR,y) instead of (X,y), for any R ∈ O(p). Then the
ridge estimator becomes R−1β̂λ and thus the second term of the rightmost side of
Equation (4.3) does not change, and furthermore, Sλ does not change; hence GCVn(λ)

remains the same.
In [Has+22], it is shown for the designs considered that both LOOCV and GCV are

asymptotically (under proportional asymptotics) equal to the out-of-sample error
E[(ynew − x⊤

newβ̂λ)
2]. In our case, LOOCV is not tractable to analyze without additional

assumptions on the distribution of Q – see Appendix A.4.1 for details. We instead focus on
GCV.
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4.2 Usual GCV with right rotationally invariant design

In this section and those that follow, we will consider the asymptotic setting as n, p → ∞
with p/n → γ. We assume that the scaling factor nE[D⊤

newDnew]/p which appears as a
multiplicative factor in the risk formula 3.4 is of constant order in the limit. This aligns
with our scaling on X: our covariates have been scaled down by a factor of

√
n, but we now

have n1 samples; hence D⊤
newDnew has entries of order n′/n; thus the trace has order n′p/n,

which exactly cancels. In general, when one’s goal is to tune λ to optimize for the
out-of-sample risk, this scaling factor is irrelevant, since it is multiplied to the entire risk –
we simply require that it does not degenerate or explode in the limit.

Theorem 4.1. Let X1,X2, . . . ,Xn, . . . be a sequence of right rotationally invariant designs
where each Xi ∼ Q⊤

i DiOi and the following conditions hold:

1. lim sup λmax(D) < C almost surely for some constant C.

2. each Xn has dimensions n× p(n), with p(n)/n
n→∞−−−→ γ ∈ [0,∞).

Furthermore, let β1,β2, . . . ,βn, . . . be a sequence of signal vectors such that for all n,
βn ∈ Rp, and ‖βn‖/

√
n = r. Lastly, let yi be generated as according to (3.1).

Then if each ϵi has finite moment of order 4 + η, for some η > 0,

GCVn(λ)−
r2(vD(−λ)− λv′D(−λ)) + σ2γv′D(−λ)

γvD(−λ)2
a.s.−−→ 0. (4.4)

Proof. We will give a sketch of the proof and defer details to Appendix A.4.2.
We analyze the numerator and denominator separately. The latter is simple:

(1− Tr(Sλ)/n)
2 =

(
1− Tr((D⊤D+ λI)−1D⊤D)/n

)2
=

(
1

n

n∑
i=1

λ

λ+D2
ii

)2

= γ2λ2vD(−λ)2

The numerator only requires slightly more work. Recall y = Xβ + ϵ. Furthermore, note
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that the GCV numerator can be rewritten as below:

1

n
y⊤(I− Sλ)

2y =
1

n
β⊤X⊤(I− Sλ)

2Xβ︸ ︷︷ ︸
T1

+2
1

n
ϵ⊤(I− Sλ)

2Xβ︸ ︷︷ ︸
T2

+
1

n
ϵ⊤(I− Sλ)

2ϵ︸ ︷︷ ︸
T3

.

We handle each term. First, T1 simplifies easily into a quadratic form which allows us to
apply Hanson-Wright (Lemma 3.2):

T1 =
1

n
(Oβ)⊤D⊤(I−D(D⊤D+ λI)−1D⊤)2D(Oβ)

This again concentrates around its expectation, which is

=
‖β‖2

n

Tr(D⊤(I−D(D⊤D+ λI)−1D⊤)2D)

p

=
‖β‖2

n
λ2 (mD(−λ)− λm′

D(−λ)) =
‖β‖2

n

λ2

γ
(vD(−λ)− λv′D(−λ))

and the concentration is enough so that we can just apply Borel-Cantelli to obtain almost
sure convergence of their difference. The second term has expectation zero, since ϵ is
independently random; we again can control this term using some concentration
arguments, and obtain almost sure convergence. For the third term, we use Lemma C.3 of
[DW18, SI], which just states that this term again converges almost surely to its
expectation (in the sense that the difference converges almost surely to 0), which is

E[T3] =
σ2

n
Tr((I− Sλ)

2) =
σ2

n
Tr
(
(I−D(D⊤D+ λI)−1D⊤)2

)
= σ2λ2v′D(−λ);

this is what requires the moment condition on ϵ.
Plugging everything in produces

GCVn(λ)−
r2(vD(−λ)− λv′D(−λ)) + σ2γv′D(−λ)

γvD(−λ)2
a.s.−−→ 0.
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Remark 4. When compared to the statement of [Has+22, Theorem 7], we no longer require
β to be random, as for right-rotationally invariant designs, having fixed β is equivalent to
having β drawn independently from X. The differing moment conditions are due to an
error in the original paper. The 4 + η moment condition was also required for ϵ; we in
general do not require it for xi, hence allowing for our theory to handle fat-tailed
distributions such as the t distribution, as seen earlier; instead, we require that D has
bounded operator norm in the limit.

Remark 5. In fact, one can generalize to having ‖βn‖/
√
n → r, or having a sequence of

noise levels σ2
n → σ2 instead without much difficulty. Furthermore, if we further assume

that ϵi has entries with uniformly bounded sub-Gaussian norm, then the asymptotic setup
above is unnecessary, and in fact one can derive finite sample control by using
Hanson-Wright to obtain finite sample concentration of T3. This analysis is not pursued
here, because, as we will discuss, the GCV in this setting is not asymptotically consistent
for the prediction error.

Expressed in terms of Stieltjes transforms, the above formula for the GCV is equal to the
same form as in [Has+22]. The main problem is that the correctness of that form (in terms
of being consistent for out-of-sample risk) relies on two miraculous differential equalities
satisfied by the Marchenko-Pastur law. There, it is proven that the GCV is asymptotically
consistent in the case of isotropic features and i.i.d. rows, where the authors explicitly find

GCVn(λ)− E[(ynew − x⊤
newβ̂)

2]
a.s.−−→ 0.

In that setting, one is able to write E[(ynew − x⊤
newβ̂)

2] = E[RX(β̂,β)] + σ2 and then apply
results from Theorem 3.2 to write down the explicit form of this expression. Though this is
glossed over in the original work [Has+22], these two expressions are not equal in general –
in particular, if one compares the result of Theorem 4.1 with that of Theorem 3.2, it is
clear that for the two to be equal, one must have the following two identities for the
companion Stieltjes transform:

v(−λ)− λv′(−λ) + 1 =
v′(−λ)

v(−λ)2
1

γ
λ2v′(−λ) +

γ − 1

γ
=

v(−λ)− λv′(−λ)

γv(−λ)2
.

43



Both of these identities are consequences of the Silverstein equation [Sil95] for the
companion Stieltjes transform, which in this case specializes to

1

vD(−λ)
= λ+

γ

1 + vD(−λ)
.

One can derive an equivalent self-consistent equation using the leave-one-out method1.

4.3 A Modified GCV

Such beautiful identities do not exist for us, and thus the GCV is naturally biased as soon
as the spectrum of X⊤X departs from being Marchenko-Pastur. We give a possible
alternative which is provably consistent. To motivate this method, we begin by
re-examining two quantities. First, the GCV numerator takes the form

n∑
i=1

(yi − x⊤
i β̂λ)

2 =
1

n
y⊤(I− Sλ)

2y (4.5)

and in the course of proving its limit, we show

1

n
y⊤(I− Sλ)

2y −
[
r2
λ2

γ
(vD(−λ)− λv′D(−λ)) + σ2λ2v′D(−λ)

]
a.s.−−→ 0. (4.6)

The risk on an independent test set, as derived in Theorem 3.2, satisfies2

RX(β̂,β)−
[
r2
(
λ2

γ
v′D(−λ) +

γ − 1

γ

)
+ σ2 (vD(−λ)− λv′D(−λ))

]
a.s.−−→ 0. (4.7)

The root purpose of GCV is to accurately tune the parameter λ so that it performs as best
possible on the test sample. Hence, it is sufficient to find a way to transform the expression
in (4.6) into a monotonic function of (4.7). This is exactly what occurs in the i.i.d. setting,

1The key identity necessary is 1
v(z) = −z(v(z) + 1) + (γ − 1) = −z + γ

1+v(z) , which can be derived by
manipulating the defining quadratic of the Stieltjes transform.

2While almost sure convergence was not shown explicitly, for sequences of n, p,D as in the context of
Theorem 4.1, Borel-Cantelli applied to our bounds gives almost sure convergence.
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where the correction factor in the denominator changes the expression in (4.6) into the one
in (4.7) plus the additive noise factor σ2. We want to try to do something similar.

We view the GCV and the ridge limit as having two components, one the coefficient of r2

and the other the coefficient of σ2. In our original analysis, we sought a new denominator
d(λ) such that a result of the sort

RX(β̂,β)−
1

d(λ)

[
1

n
y⊤(I− Sλ)

2y

]
a.s.−−→ ar2 + bσ2

where a and b are free of λ. A result of this sort would enable us to thereby tune for the
optimal value of λ using this modified GCV objective, since the additive factors of a and b

do not affect which value of λ is optimal. Unfortunately, this is rather difficult for us to do
in general, since D can be rather arbitrary.

However, if one could estimate σ2 or r2, then producing a consistent estimator for the
out-of-sample error is not so difficult. In particular, if provided an estimator for one of the
quantities, one can just use (4.6) as an equality to estimate the second, and then compute
the risk using Theorem 3.2 (see also Appendix A.4.2 for an alternative motivation). A
consistent estimator for σ2 is in fact known for right-rotationally invariant designs, and is
given in [LS23]:

σ̂2(X,y, λ) =
‖y −Xβ̂λ‖2 − ‖(In + λ−1XX⊤)(y −Xβ̂λ)‖2

∑p
i=1

λ2D2
ii

(D2
ii+λ)2

(
∑p

i=1 D
2
ii)

−1∑p
i=1

λ2

(λ+D2
ii)

2 − n (
∑p

i=1 D
2
ii)

−1∑p
i=1

D2
ii

(λ+D2
ii)

2 + n− p
.

(4.8)

Most results in the paper are stated under the assumptions in 4.1 as well as the following
additional assumption:

(A*) Almost surely, the diagonal entries of D converge in the Wasserstein-2 (W2) distance
to a measure D, where D2 has non-zero mean and compact support
supp(D2) ⊆ [0,∞). See Appendix A.6.2 for details on Wasserstein-2 convergence.

Remark 6. If such an assumption is made, one can, instead of stating results in terms of
the difference converging almost surely to zero, as in (4.6, 4.7), instead write them as
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converging almost surely to the Stieltjes transform taken over the limiting spectral measure
D2.

Note that any possible value of λ produces a consistent estimator. Our proposed
modification then proceeds as follows.

1. Compute σ̂2(X,y, λ) as above.

2. Compute an estimator for r̂2 by using Equation 4.6 as an estimating equation, i.e. set

r̂2(σ̂2, λ) =
1
n
y⊤(I− Sλ)

2y − λ2v′D(−λ)σ̂2

λ2

γ
(vD(−λ)− λv′D(−λ))

. (4.9)

3. Finally, one just plugs in estimators for r̂2, σ̂2 to the result of Theorem 3.2 and
produces

r̂2
(
λ2

γ
v′D(−λ) +

γ − 1

γ

)
+ σ̂2(vD(−λ)− λv′D(−λ)) (4.10)

as the estimate for the out-of-sample risk.

Lemma 4.1. Under the assumptions of Theorem 4.1, the estimator r̂2 proposed above is
consistent for any value of λ > 0 and any consistent estimator σ̂2 provided there exists
some constant c such that vD(−λ)− λv′D(−λ) > c with probability approaching 1. If instead
σ̂2 is strongly consistent and lim infn→∞ vD(−λ)− λv′D(−λ) > 0 almost surely, then r̂2 is
also strongly consistent.

The proof of the above statement is immediate from (4.6), (4.9), and the consistency of
σ̂2. We instead discuss the assumptions stated, which is essentially that the denominator of
(4.9) is bounded away from zero. One has

vD(−λ)− λv′D(−λ) =
1

n

n∑
i=1

D2
ii

(D2
ii + λ)2

≥ (D2
11 + λ)−2

(
1

n

n∑
i=1

D2
ii

)
(4.11)

Hence the assumption on bounded operator norm of Theorem 4.1, together with the
assumption that the limiting spectrum has nonzero mean (Assumption (A*)), is sufficient
for this to hold.
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Lemma 4.2. Under the assumptions of Theorem 4.1, for any consistent estimators (r̂2, σ̂2)

of (r2, σ2), respectively, one has, for any λ0 > 0,

sup
λ>λ0

∣∣∣∣(r̂2 − r2)

(
λ2

γ
v′D(−λ) +

γ − 1

γ

)
+ (σ̂2 − σ2)(vD(−λ)− λv′D(−λ))

∣∣∣∣ p−→ 0. (4.12)

If r̂2, σ̂2 are strongly consistent, then naturally the convergence is almost sure.

Proof. This is immediate from the fact that

λ2v′D(−λ) =
1

n

n∑
i=1

λ2

(D2
ii + λ)2

≤ 1

vD(−λ)− λv′D(−λ) =
1

n

n∧p∑
i=1

D2
ii

(D2
ii + λ)2

≤ 1

4λ
.

Remark 7. In the uniform convergence statement of [Has+22], they require compact
intervals bounded away from zero. Here, we do not have this issue because things are
stated in terms of the finite sample empirical spectrum. If we instead adopt Assumption A*
and try to show convergence of this modified GCV to the limiting spectral object

r2
(
λ2

γ
v′D(−λ) +

γ − 1

γ

)
+ σ2 (vD(−λ)− λv′D(−λ)) ,

where vD(z) refers to s(D2, z), the Stieltjes transform taken over the limiting distribution
D2, then one must do the same.

Lemma 4.3. Under the assumptions of Theorem 4.1 and Assumption (A*), then one has,
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for any λ1, λ2 satisfying 0 < λ1 < λ2 and any two consistent estimators r̂2, σ̂2,

sup
λ∈[λ1,λ2]

∣∣∣∣(r̂2(λ2

γ
v′D(−λ) +

γ − 1

γ

)
+ σ̂2(vD(−λ)− λv′D(−λ))

)
−

(
r2
(
λ2

γ
v′D(−λ) +

γ − 1

γ

)
+ σ2 (vD(−λ)− λv′D(−λ))

)
︸ ︷︷ ︸

RX(β̂,β)

∣∣∣∣∣∣∣∣∣
p−→ 0.

As usual, if the two estimators are instead strongly consistent, then the above convergence
is almost sure.

Proof. Applying the triangle inequality and Lemma 4.2 allows us to reduce to showing

sup
λ∈[λ1,λ2]

∣∣∣∣(r2(λ2

γ
v′D(−λ) +

γ − 1

γ

)
+ σ2(vD(−λ)− λv′D(−λ))

)
−(

r2
(
λ2

γ
v′D(−λ) +

γ − 1

γ

)
+ σ2 (vD(−λ)− λv′D(−λ))

)∣∣∣∣ p−→ 0.

This is just

sup
λ∈[λ1,λ2]

∣∣∣∣r2(λ2

γ
v′D(−λ)− λ2

γ
v′D(−λ)

)
+

σ2 ((vD(−λ)− λv′D(−λ))− (vD(−λ)− λv′D(−λ)))
∣∣ p−→ 0. (4.13)

Hence it suffices to prove

sup
λ∈[λ1,λ2]

∣∣λ2(v′D(−λ)− v′D(−λ))
∣∣ p−→ 0

sup
λ∈[λ1,λ2]

|(vD(−λ)− λv′D(−λ))− (vD(−λ)− λv′D(−λ))| p−→ 0.
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We proceed by a standard discretizing argument. First, we note that∣∣∣∣ ddλ [λ2vD(−λ)
]∣∣∣∣ = ∣∣2λv′D(−λ)− λ2v′′D(−λ)

∣∣
=

∣∣∣∣∣2λ 1

p

p∑
i=1

λ2

(D2
ii + λ)2

− 1

λ

1

p

p∑
i=1

λ3

(D2
ii + λ)3

∣∣∣∣∣ ≤ 2

λ
≤ 2

λ1

,

and the same holds for vD. Thus all functions in the sequence as well as the limit itself are
Lipschitz on the interval [λ1, λ2]. Hence one can discretize the interval [λ1, λ2] into a
sufficiently fine finite grid; pointwise convergence (from convergence in Wasserstein-2
distance – note that v(−λ) is uniformly bounded for λ > λ1) holds along every point on the
grid, and one controls the difference away from the points on the grid using the Lipschitz
property and the triangle inequality, yielding uniform convergence.

Similarly, we can likewise bound the derivative of vD(−λ)− λv′D(−λ), and similar
arguments apply. The modifications needed if the estimators are strongly convergent are
then clear.

4.3.1 Alternative estimators for r2, σ2

While the above procedure was provably consistent, in finite sample settings, having
excessive error in estimating either of r2 and σ2 can cause the modified GCV procedure to
give poor tuning results. We present an alternative scheme for estimating the two
quantities which we empirically observe has better finite sample performance (around 20%
lower standard deviation for both r2 and σ2 at n = p = 1000).

We first describe the motivation3 for the following procedure. Observe that
equation (4.6) can be used as an estimating equation, as the first term is estimable –
moreover, it is an estimating equation for every value of λ. Hence, if one computes it over a
range of λ, then one can solve for values of σ2 and r2, since the coefficients of the two terms
are in terms of the Stieltjes transform of the empirical measure, which can directly be
computed. Furthermore, one generically wishes to avoid errors in estimating σ2 from

3The root motivation was that I implemented the previous scheme incorrectly and thought it was too
loose.
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propagating into those in estimating r2. Hence by evaluating this in at least three points,
one can produce two estimating equations for r2 and two for σ2, each of which does not
require an estimate of the other quantity. Explicitly, the scheme proceeds as follows.

1. One first specifies a list of regularization strengths λ1, . . . , λL. Empirically, we
observe that taking them to be logarithmically spaced between 1 and 102.5 works
well, with L = 6.

2. For each λℓ, one computes the GCV numerator

GCVnum(λ) =
1

n
y⊤(I− Sλ)

2y

as well as the coefficients for r2 and σ2, which are

aℓ =
λ2
ℓ

γ
(vD(−λℓ)− λℓv

′
D(−λℓ)) (4.14)

bℓ = λ2
ℓv

′
D(−λℓ), (4.15)

respectively. This produces a system of L equations

GCVnum(λℓ) = aℓr
2 + bℓσ

2.

3. To estimate r̂2, one now eliminates σ2 from all equations, producing L− 1 constraints
for r2. One then fits r̂2 using least-squares (without an intercept). The case for σ̂2 is
analogous.

4.3.2 Performance of Modified GCV

We now compare this modified GCV to the original GCV in the same synthetic and
semi-synthetic settings examined in Chapter 2. For the synthetic settings, our benchmark
will be the true theoretical risk, while for the semi-synthetic settings, our benchmark will
be the average of certain MSE curves taken over a test dataset. Our modified GCV
estimates r2 and σ2 using the methods described earlier – a useful benchmark to compare
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this against is an oracle version that is given direct access to r2 and σ2 – we refer to this as
Oracle GCV.

Fully synthetic settings

The performance of the modified GCV (labeled New GCV in the figures), as well as the
original GCV formulation, are illustrated in Figure 4.1. From 4.1a, one can see that even
for Gaussian data, our method does similarly well, whereas for Figures 4.1b, 4.1c, 4.1d,
even though the performance of the tuned estimators are numerically similar (see numbers
below title for tuned estimator risk), it is clear that the modified GCV is actually
accurately estimating the true out-of-sample risk, while the original GCV is just managing
to produce a tuned value of λ which is not far from optimal. Note furthermore that over
the range of λ, the i.i.d. prediction is biased, especially at small λ, while the
right-rotationally invariant risk prediction is less so. This again suggests that it provides
better finite sample variance quantification.

Semi-synthetic settings

We repeat the analysis above, now in the semi-synthetic setting. The modified GCV
essentially does as well as the oracle version can – when the oracle version is biased, so too
is the modified GCV. Note that the modified GCV is generally good at maintaining the
shape of the loss curve, even when it is subject to some bias, such as in 4.2d. Note,
however, in all of these cases, the modified GCV still does not outperform the original
GCV, even though it more accurately estimates the loss curve itself.

4.3.3 Potential Improvements

A problem that emerges in this scheme for estimating r2 and σ2, as well as in the original
proposal, is that the resulting estimates for r2 and σ2 are negatively correlated. This is
undesirable because the value of the optimal choice of λ depends directly on their ratio –
hence being negatively correlated distorts this ratio even more than usual.
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A possible solution may be to exploit a second set of estimating equations. Specifically,
one can in fact prove that the norm of the estimator β̂λ converges to an expression also
involving r2, σ2, and some terms involving the companion Stieltjes transform. Hence this
allows a second avenue for estimating the two quantities, and may help with this
anti-correlation issue.
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(a) Gaussian data (b) Autocorrelated data, ρ = 0.9

(c) t-distributed data (d) Equicorrelated data, ρ = 0.8

Figure 4.1: Performance of GCV in various synthetic settings. All simulations have n = p = 1000
and r2 = σ2 = 1. The x-axis is λ, the regularization parameter. Below each title is the out-of-
sample risk obtained when the the given GCV method is used, or, in the case of actual risk, the true
minimum, along with its standard error. The colored lines are one of 20 iterations. In each iteration,
we compute the GCV metric over a range of λ to produce the line, which reflects the estimated out-
of-sample risk. Theoretical risk is plotted in all three as reference, and refers to the exact value of RX

– note that the actual MSE curves differ from this slightly because they are additionally conditional
on the instance of ϵ.
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(a) Speech data (b) Residualized returns, k = 1 minute returns.

(c) Residualized returns, k = 3 minute returns. (d) Residualized returns, k = 30 minute returns.

Figure 4.2: Performance of GCV in various semi-synthetic settings. We again take r2 = σ2 = 1.
As in Figure 4.1, below each title is the out-of-sample risk obtained when the the given GCV method
is used, or, in the case of actual risk, the true minimum. The colored lines are one of 20 iterations.
In each iteration, we compute the GCV metric over a range of λ to produce the line, which reflects
the estimated out-of-sample risk. In each plot, the average of the MSE curves over the iterations is
plotted as the reference true risk, as opposed to the theoretical risk before. For speech data, n = p =
400; for residualized returns, n = p = 493. γ = 1 was chosen for illustrative purposes.
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5
Towards the nonlinear model

The original aim of this thesis was to analyze the random features model where the weight
matrix was taken to be right rotationally invariant. Unfortunately, some technical barriers
prevented us from pushing this through. We give an overview of the methods used to prove
this result for the i.i.d. Gaussian setting and where difficulties arise in the
right-rotationally invariant setting. We then state some conjectures under which the
equivalence holds, include numerical simulations supporting their validity, and outline the
remainder of the proof.

5.1 Preliminaries

In the random features model we consider, one is given a dataset {(xi, yi)}ni=1, where now
xi ∈ Rd (note the change from p to d) generated by some ground truth linear function
defined by ξ, i.e. y = Xξ + ϵ. More generic structures are possible, such as having a
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nonlinear ground truth as in [MM19], or a generic function applied component-wise to the
inner products Xξ [HL20], but we pursue only this for simplicity. As described at the end
of Chapter 1, the random features model is essentially a one-hidden-layer neural network
with hidden layer randomly sampled and then fixed, and final layer weights learned.
Explicitly, one samples a random weight matrix F ∈ Rd×p, chooses an activation function
σ, and computes the feature map taking X 7→ σ(XF) ∈ Rn×d. One now performs ridge
regression of y onto this feature matrix σ(XF), giving final layer weights w satisfying

w = arg min
w∈R

{
n∑

i=1

(
yi −

1
√
p
w⊤σ(F⊤xi)

)2

+ λ‖w‖2
}
. (5.1)

The resulting estimator is then f̂ : x 7→ w⊤σ(F⊤x). We will refer to σ(XF) as the
nonlinear features. Since only the weights of w are learned, there are a total of p learned
parameters in this model.

As in Chapter 3, we wish to understand the out-of-sample risk of this estimator. This
problem is analyzed under proportional asymptotics – we take, n, p, d → ∞ together, where
n/d → α > 0 and p/d → η > 0. The inputs xi are drawn from N(0, Id), so the inputs are no
longer dependent, but we take the feature matrix F to be right-rotationally invariant. In
contrast, existing literature focuses largely on the setting where the feature matrix is to
contain suitably normalized i.i.d. Gaussian – hence showing this result would be a strict
improvement over existing theory. We explicitly define the train and test loss which we
wish to characterize:

Etrain =
1

p

{
n∑

i=1

( 1√
p
w⊤σ(F⊤x)− yt)

2 +

p∑
j=1

h(wj)

}

Etest = E

[(
ynew − 1

√
p
(w⊤σ(F⊤xnew)

)2
]
.
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5.2 An Overview of Methods and Barriers

5.2.1 Method of [HL20]

[HL20] presents a pathway for proving that a sequence of sufficiently regular random
matrices satisfies a Gaussian Equivalence property, namely that, asymptotically, the
nonlinear model above in fact possesses the same training and test loss as a Gaussian
model with matching first and second moments. Though they only explicitly show their
method works for the case of i.i.d. Gaussian weights, their proof is largely deterministic –
only a tiny portion uses that F is random. It in fact applies more generally to various loss
functions ℓ and regularizations h – we will discuss only the case were ℓ(x, y) = (x− y)2 and
h(w) = λw2, so that

∑p
i=1 h(wi) = λ‖w‖. Additionally, we assume the following regularity

conditions:

1. Regularity on the activation: σ is bounded, odd, and admits three derivatives

2. ξ is deterministic, with ‖ξ‖ = 1.

One first defines

µ1 = E[Zσ(Z)] µ2 = (E[σ2(Z)]− µ2
0 − µ2

1)
1/2.

where Z above is a standard Gaussian, and Σ = µ2
1F

⊤F+ µ2
2Ip. Our goal will be to show

that the test and train error of the nonlinear features A = σ(XF) is the same as that of
the linearized features

B = µ1XF+ µ2Z (5.2)

where Z ∈ Rn×p has i.i.d. N(0, 1) entries independent of everything. Let ai be the i-th row
of A, and respectively for bi,B.

Next, we define, for any set of regressors R = [r1, . . . , rn], the optimization objective

ΦR(τ1, τ2) := inf
w∈Rp

{
n∑

i=1

ℓ( 1√
p
r⊤t w; yt) +

p∑
j=1

h(wj) + τ1 · (w⊤Σw) + τ2 · (
√
pµ1ξ

⊤Fw)

}
.

(5.3)
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τ1 and τ2 are technical terms needed later, and their range is restricted such that the above
problem always remains strongly convex. Note that the training loss exactly corresponds to
the setting where τ1 = τ2 = 0, up to rescaling.

The proof is then carried out by the Lindeberg method. The authors construct a
sequence of learning problems by repeatedly exchanging the nonlinear and linearized
features. On each step of the path, they show that the training loss does not change much.
The interpolation path used is

Lk(w) =
k∑

t=1

ℓ( 1√
p
b⊤
t w; yt) +

n∑
t=k+1

ℓ( 1√
p
a⊤
t w; yt) + τ1 · (w⊤Σw) + τ2 · (

√
pµ1ξ

⊤Fw)︸ ︷︷ ︸
Q(w)

. (5.4)

Essentially, the k-th problem on the path has the first k features as the linearized features,
but the remaining n− k are nonlinear. The authors control this difference, and this allows
them to prove the equivalence of Φ(A)/p and Φ(B)/p. To strengthen this to equivalence of
test error, they require the following additional assumption:

• There exists a limit function q∗(τ1, τ2) such that ΦB(τ1, τ2)/p → q∗(τ1, τ2) for all
settings of τ1,2; furthermore, the partial derivatives exist at τ1 = τ2 = 0, with
∂τ1q(0, 0) = ρ∗ and ∂τ2q(0, 0) = π∗, and ρ∗ 6= 0.

Essentially, the terms multiplied to τ1 and τ2 are in fact the covariance of the linearized
model with the inner product present in the true model. That is, when testing on a new
point xnew, the error is characterized by the joint distribution of the linearized feature
bnew = µ1F

⊤xnew + µ2znew and the true signal ξ⊤xnew – it turns out this covariance
information is exactly stored in the coefficients of τ1 and τ2, and can thus be extracted by
taking these partial derivatives.

As mentioned earlier, most of the proof of [HL20] holds for deterministic weight matrices
F. The only remaining steps to be checked for when the right-rotationally invariant model
are as follows:

1. An approximate orthogonality condition: Let fi be the ith column of F, and f0 = ξ.
Then

max
0≤i≤j≤p

∣∣f⊤i fj − δij
∣∣ ≤ (log p)2/p (5.5)
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with probability at least 1− (polylog p)/
√
p, where δij = 1(i = j).

2. A bounded ℓ∞ property, which in their setting is provided by [HL20, Lemma 23 and
Proposition 2]. Explicitly, let w∗

k be the optimal solution to the optimization problem
Lk. There exists some c∞ > 0 such that for every p and 0 ≤ k ≤ n,

P(‖w∗
k‖∞ ≥ polylog p) ≤ c∞ exp

[
−c−1

∞ (log p)2
]
. (5.6)

In fact the orthogonality condition is not hard to check. One way to see that this should
hold is that this amounts to controlling ‖F⊤F− Ip‖∞, and as shown in Lemma 3.1, we
know E[F⊤F] = Tr(D⊤D)

p
Ip. Hence if this trace is fixed to be p, one just needs to prove some

concentration. To do this, one can rewrite the inner product f⊤i fj in terms of (oi,oj), the
ith and jth columns of O. These are nothing but a pair of orthogonal vectors on the
sphere, and thus can be represented as two normalized Gaussians, where the second is
orthogonalized (via Gram-Schmidt) from the first; these terms can then be controlled
through standard techniques, such as the Bernstein inequality.

The true difficulty lies in this bounded ℓ∞ property. We now give a brief overview of how
this is proven in [HL20] and illustrate the barrier that arises – this is the proof of [HL20,
Lemma 23].

By exchangeability, it suffices to control the size of a single coordinate of the weight
vector – without loss of generality, let it be the last one. The strong convexity of the loss
function (given by the presence of the regularizer) allows one to then essentially bound the
norm of the last coordinate in terms of three other terms:

1. √
pξ⊤f p,

2. f⊤p F−pw
∗
k,

3. 1√
p

∑n
t=1 ℓ(

1√
p
r⊤t w

∗
k)(rt)p

where F−p refers to the first p− 1 columns of F and w∗
k ∈ Rp−1 is the solution to Lk above,

but with the p-th coordinate of w already set to 0 (hence making it an optimization over
p− 1 parameters). Also, here rt refers to bt for t ≤ k, and at for t > k.
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For right-rotationally invariant design, the first term is already controlled in the course
of the proof of the orthogonality condition, and the third can be dealt with in the manner
shown in [HL20], where instead of using Gaussian Lipschitz concentration, we employ the
convex concentration property for spherical vectors shown in [Sch14]. Hence all that
remains is the second term. This is the core barrier in the proof, and furthermore
highlights the distinction between i.i.d. Gaussian and right-rotationally invariant design.
In the Gaussian setting, bounding this term is quite easy. One can show that, for fixed F,
the norm of w∗

k is roughly of order √p. Furthermore, since it is only fit on the first p− 1

features, it, along with F−p are independent of fp – hence one can control the norm of
F−pw

∗
k, and then apply standard tail bounds to control the product.

Our issue is that the columns of F are not independent anymore – they are weakly
dependent. Standard lemmas for conditioning on columns of Haar matrices, such as
[RSF19, Lemma 4], which is restated in Lemma A.1, are insufficient for overcoming this,
because w∗

k is fundamentally dependent on all of F. If one tries conditioning on fp+1 by
conditioning on op+1, the conditional distribution of F−p can be derived using the
aforementioned lemma, but not that of w∗

k. Different techniques must be used to control
this term.

5.2.2 Method of [Has+22]

An alternate pathway to computing the out-of-sample risk is presented in [Has+22]. Here,
the authors utilize techniques from random matrix theory. In particular, one can extract
the bias and variance of the model by taking suitable derivatives of the resolvent of a
certain matrix. This amounts to computing the limiting Stieltjes transform of a the block
matrix using the leave-one-out technique. This technique arrives at the same barrier as in
the previous work, where any given row or column of F is no longer independent of the rest.

5.3 A Sufficient Conjecture and Numerical Evidence

Hence, the only remaining barrier to proving the Gaussian equivalence is that this
quadratic form f⊤p F−pw

∗
k is bounded. We believe this should be true for most settings of D.

In this section, we present numerical evidence that this is the case. See Figure 5.1, which
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displays the maximum ℓ∞ norm over all k for the Gaussian setting as well as two
right-rotationally invariant designs. For the linear spectrum example, the entries of D are
linearly spaced, and further normalized such that Tr(D⊤D) = p. For the alternating
spectrum example, half of the singular values are 1, and the other half are 2; the spectrum
is again normalized.

These examples show that for these settings of the spectrum, the growth of the ℓ∞ norm
is very moderate - we need it to be polylogarithmic in p, and admittedly simulating a large
range of log p is quite difficult. However, all examples seem to suggest very slow growth of
this quantity, though its possible one may need to set λ sufficiently large in some settings.

5.3.1 What Remains

Not much remains to be shown after proving the above conjecture. The equivalent
Gaussian model has already been extensively studied in works such as [DL20; Has+22],
and one then simply needs to analyze its behavior under the covariance structure in the
linearized model that is induced by the right-rotationally invariant distribution of F.
Hence, one should be able to calculate the limiting risk in terms of the limiting spectrum of
F, thus completing the picture.
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(a) Gaussian Weights (b) Linear Spectrum

(c) Alternating Spectrum

Figure 5.1: The value of maxk ‖w∗
k‖ as p grows, over a range of λ. Darker λ refers to lower regular-

ization. Plotted value is the maximum value across 20 trials. Activation is a centered sigmoid.
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A
Proofs

A.1 Evidence for Universality

See Figure A.1, which shows that the right-rotationally invariant risk prediction still holds
despite the designs no longer being actually right-rotationally invariant.

A.2 Proofs for Chapter 3

A.2.1 Discussion of in-sample risks

Recall the problem that we wish to consider is as follows. We partition the rows and
columns of X and y as X = [X⊤

1 ,X
⊤
2 ]

⊤ and y = [y⊤
1 ,y

⊤
2 ]

⊤, where X1 ∈ Rn1×p and
y1 ∈ Rn1 , while X2 ∈ Rn2×p,y2 ∈ Rn2 , with n1 + n2 = n. We then try using (X1,y1) to
learn β̂1, and then calculate the risk

1

n2

E
[
‖X2β̂ −X2β‖2 | X1

]
.

The particular result necessary for this setting is the following:

Lemma A.1 ([RSF19, Lemma 4], conditional dist. of a Haar matrix). Let
O ∼ Haar(O(p)), and let G be the event that A = OB, where A,B ∈ Rp×s for some s ≤ p
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Figure A.1: I.i.d. rows, Gaussian, Uniform, and Rademacher distributions for the entries; scaled so
that every row has mean zero and variance 1.

are fixed matrices. Assume A,B are of full column rank, and let UA⊥ and UB⊥ be any
p× (p− s) matrices whose columns are orthonormal bases for Range(A)⊥ and Range(B)⊥,
respectively.

Then the conditional distribution of O given G can be written as

O|G
d
= A(A⊤A)−1B⊤ +UA⊥ÕU⊤

B⊥ (A.1)

where Õ ∼ Haar(O(p− s)) is independent of G.

The standard way to approach this is treat Q, D as fixed, and then to take a matrix
M1 ∈ Rn1×n, where Mii = 1, for 1 ≤ i ≤ n1. One conditions on X1 by conditioning on the
event X1 = M1X = M1Q

⊤DO, which can now be done using the above Lemma. However,
one immediate restriction is now that we must have n1 < p; this is a restriction just from
the Lemma, but since we are treating Q,D as fixed, in fact O is already fixed after
observing more than n1 rows of X. If one works under this assumption, then the
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computation can be carried out:

E[(β − β̂)⊤X⊤
2 X2(β − β̂) | X1] = Tr

(
E[X⊤

2 X2(β − β̂)(β − β̂)⊤ | X1]
)

One now notes that X2 and β̂ are conditionally independent due to the fact that β is a
function of only X1 and the independent noise ϵ1. Hence:

= Tr
(
E[X⊤

2 X2 | X1]E[(β − β̂)(β − β̂)⊤ | X1]
)

Now both terms can be computed directly by employing the Lemma. We write
X1 = M2Q

⊤DO, where O, conditional on X1, using the above Lemma, has some closed
form representation involving a new independently random matrix Õ. The result in a
complicated expression involving Q,D,X1. As we have no distributional assumptions on
Q, this expression is not meaningful – it is perhaps possible to do something when Q is
also Haar, but this analysis is not pursued here.

A.2.2 Bias-Variance Decomposition

E
[
‖Xnewβ̂ −Xnewβ‖2 | X

]
= E

[
(β̂ − β)⊤X⊤

newXnew(β̂ − β) | X
]

= E
[
(β̂ − β)⊤E[X⊤

newXnew](β̂ − β) | X
]

=
E[Tr(D⊤

newDnew)]

p
E
[
‖β̂ − β‖22 | X

]
(Lemma 3.1)

=
E[Tr(D⊤

newDnew)]

p
E[‖β̂ − E[β̂ | X] + E[β̂ | X]− β‖2 | X]

=
E[Tr(D⊤

newDnew)]

p

(
‖E[β̂ | X]− β‖22 + E[‖β̂ − E[β̂ | X]‖22 | X]

)
and thus

RX

(
β̂(X,y),β

)
=

E[Tr(D⊤
newDnew)]

p
·

 1

n
‖E[β̂ | X]− β‖22︸ ︷︷ ︸

BX(β̂,β)

+
1

n
Tr(Cov(β̂ | X))︸ ︷︷ ︸

VX(β̂,β)

 .
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A.3 Ridge(less) regression proofs

A.3.1 Proof: Risk of finite ridge regularization

The variance is direct. One calculates

VX(β̂,β) = n−1Tr(Cov(β̂ | X))

= n−1σ2Tr((X⊤X+ λI)−1X⊤X(X⊤X+ λI)−1)

= n−1σ2Tr((D⊤D+ λI)−1D⊤D(D⊤D+ λI)−1)

= n−1σ2Tr((D⊤D+ λI)−2D⊤D)

=
σ2

n
Tr
(
(D⊤D+ λI)−2D⊤D

)
=

n∧p∑
i=1

D2
ii

(D2
ii + λ)2

For the bias,

BX(β̂,β) = n−1‖E[β̂ | X]− β‖22
= n−1β(I− (X⊤X+ λI)−1X⊤X)2β

= n−1(Oβ)⊤
[
I− (D⊤D+ λI)−1D⊤D

]2
(Oβ)

= n−1(Oβ)⊤
(
λ(D⊤D+ λI)−1

)2
(Oβ)

Again let b = (Oβ)/‖β‖ and P =
(
λ(D⊤D+ λI)−1

)2, and note Tr(P) =
∑p

i=1
λ2

(D2
ii+λ)2

and
‖P‖2F =

∑p
i=1

λ4

(D2
ii+λ)4

. Furthermore, one has E[b⊤Pb] = 1
p
Tr(P) using 3.3, and clearly

‖P‖ ≤ 1. We now apply 3.2 to show concentration:

P
(∣∣∣∣b⊤Pb− 1

p
Tr(P)

∣∣∣∣ ≥ t

)
≤ 2 exp

(
−Cmin

(
p2t2

2K4‖P‖2F
,
pt

K2

))
= 2 exp

(
−Cpmin

(
t2

2K4 1
p
‖P‖2F

,
t

K2

))

Note that 1
p
‖P‖2F is always bounded above by 1, so this bound can never be made vacuous

by a certain setting of D.
We can then obtain the same n1/2 rates for the bias under proportional asymptotics.
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Plugging in t = n−1
2
− 1
k , one obtains

P
(∣∣∣∣b⊤Pb− 1

p
Tr(P)

∣∣∣∣ ≥ n− 1
2
+ 1

k

)
= 2 exp

(
−Cγmin

(
n2/k

2K4 1
p
‖P‖2F

,
n1/2+1/k

K2

))

which again is less than n−D, for any integer D, once n is sufficiently large in terms of k
and D. Now note

1

p
Tr(P) = λ2mD(−λ).

A.4 GCV proofs

A.4.1 LOOCV Intractability

The LOOCV in our setting is difficult to analyze for reasons similar to the in-sample
prediction problem discussed in Remark 1 – the objective depends in Q, on which we do
not place any assumptions. In particular, one can derive one has

LOOCVn(λ) = y⊤(I− Sλ)D
−2
λ (I− Sλ)y/n

= y⊤(I−Q⊤(D(D⊤D+ λI)−1D⊤)Q)D−2
λ (I−Q⊤(D(D⊤D+ λI)−1D⊤)Q)y/n

where Dλ = diag((1− (Sλ)ii)
n
i=1). We try to simplify the diagonal term first.

(Dλ)ii = 1− x⊤
i (X

⊤X+ λI)−1xi

= 1− q⊤
i DO(O⊤D⊤DO+ λI)−1O⊤D⊤qi

= 1− q⊤
i D(D⊤D+ λI)−1D⊤qi

where qi is the i-th row of Q. We analyze

QD−2
λ Q⊤ =

n∑
i=1

qiq
⊤
i (D

−2
λ )ii.

Then LOOCV should contribute two terms, as the cross term should vanish. They are

(Oβ)⊤D⊤Q(I−D(D⊤D+ λI)−1D⊤)(QD−2
λ Q⊤)(I−D(D⊤D+ λI)−1D⊤)Oβ

which should concentrate around its trace.
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The second is

ϵ⊤(I−D(D⊤D+ λI)−1D⊤)(QD−2
λ Q⊤)(I−D(D⊤D+ λI)−1ϵ

which also concentrates around some multiple of its trace.
Finding this trace now involves numerous terms with Q. Everything except the center

term is diagonal, but immediately one arrives at the following difficulty:

(QD−2
λ Q)ii =

n∑
j=1

(qjq
⊤
j )ii(D

−2
λ )jj

=
n∑

j=1

(qji)
2(D−2

λ )jj

Assuming that the rows of Q are exchangeable conditional on D is insufficient to make
progress. If Q is assumed to also be Haar, then likely closed forms can be derived, but this
is not pursued.

A.4.2 Proof: Standard GCV for right-rotationally invariant designs

We explicitly bound each term and show almost sure convergence.

T1 =
1

n
(Oβ)⊤D⊤(I−D(D⊤D+ λI)−1D⊤)2D(Oβ)

This again concentrates around its expectation, which is

=
‖β‖2

n

Tr(D⊤(I−D(D⊤D+ λI)−1D⊤)2D)

p

=
‖β‖2

n

1

p

p∑
i=1

D2
ii

(
1− D2

ii

D2
ii + λ

)2

=
‖β‖2

n

λ2

p

p∑
i=1

D2
ii

(D2
ii + λ)2

=
‖β‖2

n
λ2 (mD(−λ)− λm′

D(−λ)) =
‖β‖2

n

λ2

γ
(vD(−λ)− λv′D(−λ))
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Letting P = D⊤(I−D(D⊤D+ λI)−1D⊤)2D, Hanson-Wright (Lemma 3.2)implies

P(|T1 − E[T1]| > t) ≤ 2 exp

(
−cmin

(
p2t2

2K4‖P‖2F
,

pt

K2‖P‖

))
= 2 exp

(
pmin

(
t2

2K4 1
p
‖P‖2F

,
t

K2‖P‖

))

Note that

P = diag

(
λ2D2

ii

(D2
ii + λ)2

)p

i=1

Hence

1

p
‖P‖2F =

1

p

p∑
i=1

(
λ2D2

ii

(D2
ii + λ)2

)2

=
1

p

p∑
i=1

(
λ2

(D2
ii + λ)2

)2

D4
ii ≤ ‖D‖4op

‖P‖op =
λ2D2

11

(D2
11 + λ)2

≤ ‖D‖2

By assumption, both terms are almost surely bounded in the limit. Recalling that
p(n)/n → γ, the above bound is summable in n and hence Borel-Cantelli implies almost
sure convergence.

To handle the second term, we use a slightly different method.

T2 =
1

n
ϵ⊤(I− Sλ)

2Xβ

=
1

n
(Oβ)⊤ D⊤Q(I− Sλ)

2ϵ︸ ︷︷ ︸
T4

Note that β̃ = Oβ is a uniformly random vector of norm ‖β‖. We replace this with ‖β‖ g
∥g∥

where g ∼ N(0, Ip/p). Then conditional on D, ϵ, we have 1√
n
g⊤T4 ∼ N(0, ‖T4‖/(pn)).

Furthermore note ‖T4‖ ≤ ‖D⊤‖‖Q‖‖I− Sλ‖2‖ϵ‖ ≤ ‖D⊤‖‖ϵ‖. Some standard tail bounds
complete this.

1

n
‖β‖ g⊤

‖g‖
T4 =

‖β‖√
n

1

‖g‖

(
1√
n
g⊤T4

)
= r · 1

‖g‖
1√
n
g⊤T4
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Hence

P
(
| 1√

n
g⊤T4| > t | D, ϵ

)
≤
√

2

π

‖T4‖
t · √pn

exp

(
−t2/2 · pn

‖T4‖2

)
.

We claim that lim supn→∞ ‖T4‖/
√
n is bounded. This follows from the bound above, the

law of large numbers applied to ϵ, and the assumption on D. Hence the bound above is
summable in n once more, so by Borel-Cantelli, the convergence is almost sure. An
application of Slutsky finishes, since we know ‖g‖ a.s.−−→ 1 by the strong Law of Large
Numbers. The convergence for T3 follows directly from [DW18, Lemma C.3]

Alternative modified GCV motivation

Suppose we believe that there exists some appropriate denominator for the GCV that
provides the correct correction factor. Then it must be true that the ratio of the
coefficients of σ2 and r2 in the GCV asymptotic risk (after the excess risk σ2 is removed)
must be equal to the ratio of the asymptotic form of the ridge risk. This implies that the
denominator d must satisfy

σ2 coefficient
r2 coefficient =

λ2v′(−λ)− d

v(−λ)− λv′(−λ)
=

m(−λ)− λm′(−λ)

m′(−λ)

⇐⇒ d = λ2v′(−λ)− (m(−λ)− λm′(−λ))(v(−λ)− λv′(−λ))

m′(−λ)
; (A.2)

If we solve for d and use this as the denominator, the result is that GCV is still not correct
in general (meaning the modified GCV risk, minus the excess noise, is not equal to the
ridge risk) - the error still does not match the ridge asymptotic form, because this will
always only guarantee a scaled multiple of the asymptotic ridge risk. The scale factor is not
λ-free - however, we again know its form, as it is nothing but

GCV r2 coefficient
λ-ridge r2 coefficient =

m′(−λ)

v(−λ)− λv′(−λ)
. (A.3)

It turns out after unravelling these steps, this method does exactly what is proposed in the
main text.
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A.5 Simulation Details

A.5.1 Figures 2,4,5

The true signal is f(x) = sin(2.5x) ∗ 10; the x’s are fixed as 10 evenly spaced points between
2 and -2, inclusive (probably should have used 11 points). yi is computed via f(xi) + ϵi,
where ϵi ∼ N(0, 32) is independent of everything. Regression features include one bias term,
followed by random features of the form sigmoid(g1x+ g2), with g1, g2 independent standard
normals. The original goal was to do polynomial regression, but this lead to too much
numerical instability. Minimum norm regression was used when p > n. Each alternative fit
was computed by resampling the noise ϵ - the random features were not resampled.

A.5.2 Experiments from Chapter 2

Semi-synthetic: Speech Data

Data was retrieved from OpenML repository with ID 40910 [Le; Van+13]. For a given
setting of r2, σ2, the experiment was conducted as follows. First, one computes n = [p/γ].
Then the first n rows of the dataset are taken to be the training set, and all of the
remaining rows of the dataset are taken to be a test set. A single β is then sampled. Now
we repeatedly sample the noise ϵ (since our risks are only design conditional) and measure
the squared error on the ground truth of the test set, Xnewβ. Note that the noise is also
not added in the training set. The Gaussian predictions were computed as per [Has+22,
Theorem 1], and right-rotationally invariant predictions were just computed according to
the formula given in Chapter 3.

Semi-synthetic: residualized returns

When building models for predicting financial returns for a given company, many in the
industry working on moderate to long term time horizons are interested in predicting the
residual(ized) return of a given stock. The residual return refers to the return after market
factors, such as the state of the global economy, are removed. One can imagine that when
the entire market moves up, that most stocks will also (on average) go up – the individual
properties of the actual company many not be predictive of this, and hence it is desirable
to have this portion of the return removed. Once all market factors are removed, the result
is the residualized return; the residual returns of two companies are then generally taken to
be nearly independent, since the underlying factors driving their joint movement are
assumed to be factored out.

The standard way in which residualiziation is done by employing factor models, which
provide a list of factors, as well as loadings of each stock on each factor (i.e. how much of
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the stocks movement is dictated by a given factor). The way in this is computed is
proprietary, as there are companies entirely dedicated to this, such as MSCI which
produces Barra models. One then attempts to construct portfolios which are hedged
against all factors, i.e. their total loadings are all zero.

We do not have access to such a factor model, and hence in computing our residualized
returns, we use PCA to delete some top left singular vectors of the data matrix X, where
each row is an observation of all stocks at a given timepoint, and each column is a stock.
Our experiments only remove 8 such components – in comparison, the base Barra model
has around 90 factors. In particular, our procedure is not really useful in practice, since we
use the test data to help compute the factors to delete. The reason we do this is because
PCA is quite crude and weak as a method for removing factors, and hence it is likely more
comparable to remove PCs within the sample we will test on.

Experiment Details:

1. We take minutely returns of all symbols within the S&P500, NASDAQ100, and the
top 500 largest tech companies using the Polygon API from 02-01 to 03-22 of 2024.
The reason for minutely returns was because this data was gathered for the real data
test in 3.5.3. The problem there is that the S&P 500 rebalances quarterly, meaning
the loadings change over time, and hence recent data was necessary.

2. We remove all symbols which have more than 70 NaN values on a given day, resulting
in p ≈ 500 remaining.

3. We center and standardize all returns before computing the SVD of the matrix
X = Q⊤DO. Let Q have rows Qi. The matrix deleting the top k factors is then
(In −Q1:kQ

⊤
1:k). We apply this to the design, and then restandardize. This produces

the residualized returns.

4. For measuring mean-squared error, we have a training pool of the week March 11th to
March 15th. The testing pool is then the following week, March 18th to March 22nd.

5. For each setting of n = [γp], we take the first n datapoints of a given day of the week,
and test it on the first n datapoints of that same day the next week (if there are that
many more datapoints to the end of the week). Hence larger values of n have fewer
iterations. For each of these tests, we repeat the same procedure done for the noised
example, where we resample the noise 100 times and measure the MSE against the
truth.

6. To compute the lagged variants, we simply add consecutive rows of residualized
returns together (using the small number approximation (1 + x)(1 + y) ∼ 1 + x+ y).
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A.6 Miscellany

Lemma A.2 (Equivalent definitions of right rotationally invariant). A random matrix X

satisfies X d
= XR for any R ∈ Haar(O(p)) if and only if its SVD X = Q⊤DO can be

written to satisfy O ∼ Haar(O(p)) and O ⊥⊥ Q,D. We say “can be written” because there
exists natural ambguity in the ordering of the right singular vectors, especially when D does
not have full column rank.

Proof. The reverse direction is clear. A matrix O is distributed according to Haar(O(p)) if,
for any Borel set B and any R ∈ O(p), one has P(O ∈ B) = P(OR ∈ B). Hence if
X = Q⊤DO, with O ⊥⊥ Q,D, then XR = Q⊤DOR

d
= Q⊤DO, since OR

d
= O and this

piece is independent from the rest.
For the forward direction, let O′ be Haar independent of X. Then

XO′ d
= X =⇒ Q⊤DO

d
= Q⊤DOO′. Conditional on Q,D,O, note that OO′ is still Haar;

if we now condition on only Q,D, the product OO′ is Haar. Hence OO′ ⊥⊥ Q,D. Denote
Õ = OO′. We now have X

d
= Q⊤DÕ. By Skorokhod, it is then possible to define a

coupling (X′, (Q′,D′,O′)) of X and (Q,D, Õ) such that X′ = (Q′)⊤D′O′, and we are
done.

A.6.1 Risk equivalence

We give a quick argument for the equivalence in analyzing the following forms of risk:

1. E[(x⊤
newβ − x⊤

newβ̂)
2]

2. E[(x⊤
newβ − x⊤

newβ̂)
2 | X]

3. E[(x⊤
newβ − x⊤

newβ̂)
2 | X,y]

4. All of the above but with (x⊤
newβ − x⊤

newβ̂)
2 replaced with (ynew − x⊤

newβ̂)
2

First, to see that analyzing (4) is equivalent to analyze the respective version of (1-3), note
that ynew = x⊤

newβ + ϵnew and ϵnew is independent of everything. Hence
E[(ynew − x⊤

newβ)
2 | . . . ] = σ2 + E[(x⊤

newβ − x⊤
newβ)

2 | . . . ].
To see that (3) concentrates around (2), recall that

β̂ = X⊤(X⊤X+ λI)−1X⊤y = X⊤(X⊤X+ λI)−1X⊤β +X⊤(X⊤X+ λI)−1X⊤ϵ.

Now expanding (3) produces three terms: one is a quadratic form involving β, the second
is a cross term involving ϵ and β, and the last is a quadratic form involving ϵ. Under
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sufficient conditions on ϵ, one can argue, either using Hanson-Wright or [DW18,
Lemma C.3], that it concentrates around its expectation. Likewise, one can show that,
because ϵ is independent of β, using some Law of Large Numbers type argument, that the
cross term also concentrates around zero.

Finally, that (2) concentrates around (3) usually involves some limiting behavior on the
singular values of X (or equivalently, the spectrum of X⊤X) – this is directly illustrated by
[CM22; DW18; Has+22], or by the results in this work, which show that this
design-conditional risk has a limit independent of X if the its singular values converge to
some sufficiently regular distribution.

A.6.2 Wasserstein-2 Convergence

The following section is taken from [LS23, Definition 2.2]. For a matrix
(v1, . . . ,vk) = (vi,1, . . . , vi,k)

n
i=1 ∈ Rn×k and a random vector (V1, . . . ,Vk), we write

(v1, . . . ,vk)
W2−−→ (V1, . . . ,Vk)

to mean that the empirical distribution of the columns of v1, . . . ,vk) converge to V1, . . . ,Vk

in Wasserstein-2 distance. This means that for any continuous function f : Rk → R
satisfying

|f(x, . . . , xk)| ≤ C
(
1 + ‖(x1, . . . , xk)‖2

)
(A.4)

for some C > 0, we have

lim
n→∞

1

n

n∑
i=1

f(vi,1, . . . , vi,k) = E [f(V1, . . . ,Vk)]

where E [‖(V1, . . . ,Vk)‖2] < ∞.
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